首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to minimize the stiction force caused by contact of the extremely smooth surfaces of head sliders and disks in hard disk drives, texture is usually applied on the disk surface. For future contact/near-contact recording, the stiction-induced high friction between slider and disk will become a problem. Texture on the slider/disk interface will still be an expected method to reduce friction. Recently, it was suggested to texture the slider surface. A protective coating is usually required on the textured slider surface to reduce wear of the texture. The results showed that texture on the slider surface was effective in reducing the friction between head sliders and disks. On the other hand, the texture and coating on the slider surface increase the spacing between the read/write element and the magnetic layer of the disk. The necessary and effective texture height and coating thickness are still not clear. In the present research, island-type textures with different heights (3–18 mn) were formed on slider surfaces by ion-beam etching. Amorphous carbon nitride (a-CNx) coatings of different thicknesses (0–50 nm) were coated on the textured slider surfaces as a protective overcoat. The friction and wear properties of these sliders were evaluated by constant-speed drag tests against hard disks coated with diamond-like carbon (DLC). The results show that 2 nm texture on a slider surface is sufficient for low (0.3–0.5) and stable friction of the slider against the disk in a drag test, and coatings thicker than 5 nm show similar wear resistances of the texture on slider surfaces.  相似文献   

2.
The effect of a nanoslider's crown, camber, twist and suspension load are parametrically studied and compared from a tribological standpoint. In this paper, stiction, friction, and contact start-slop (hereafter CSS) were performed on a modified disc drive equipped with a special strain gauge. For convex (positive crowned and cambered) sliders, up to five to six times reduction in rest stiction can be easily attained compared to flat sliders. This also applies to drives which have been turned off and turned on after one week.

Flat sliders with much of the air bearing surfaces etched away are, also studied. The patterned sliders did not reduce stiction when tested on a lightly textured disc coated with a lube system consisting of mobile and bonded phases.

The normal suspension force and weight of the slider when bonded together determine the apparent slider contact between the disc surface asperities. The reduction in contact area from six to four grams suspension load on the asperities is about 24 percent.

The effect of convex slider improves the disc durability during CSS. It is believed the geometry allows the convex-shaped magnetic slider to take off from the disc surface sooner than flat ones. That was observed by Lee and Bolasna. The concave slider will reduce stiction also because of smaller contact area. However, its inability to take off early results in catastrophic disc wear. Once in flight, the sliders are insensitive to the convex or concave effect.  相似文献   

3.
《Wear》2002,252(9-10):761-768
With the increase in recording density, any accumulation on slider surface can cause serious problems, such as high fly–stiction and extensive slider–disk interaction. Therefore, how to mitigate the accumulation on slider surface and thus, improve the stability and reliability of head–disk interface is becoming an important issue. In this work, a nanothin fluoropolymer overcoat with very good oleophobic and hydrophobic properties was applied on slider surface with a dipping process. Tribological performance, such as fly–stiction, normal stiction, and takeoff and landing processes, of the coated sliders was studied. Test results show that although normal stiction is not lowered, normal stiction modulation is reduced obviously by the overcoat. Fly–stiction and its modulation of coated sliders are much smaller than those of uncoated sliders. Coated sliders show much better takeoff and landing performance during contact start stop tests. After tests, the surfaces of tested sliders and disks were examined with an optical microscope, surface reflectance analyzer, and TOF–SIMS to interpret the tribological performance of the coated sliders. It can be concluded that the fluoropolymer overcoat reduces the amount of accumulation on slider surface and thus, improves the tribological performance of the coated sliders.  相似文献   

4.
The dynamics and stability of tapered air bearing sliders used for computer hard disk drive magnetic recording heads is examined using analytical methods. Lubrication theory is applied to determine the lift on the slider from the Reynolds equation in the limit of large bearing number. The dynamics of the slider are given by a nonlinear integro-differential equation. Linear stability analysis of this model yields valuable insight into the behavior of the slider. Most significantly, it is found that convective effects can not be neglected and yield either damping or instability depending on the slider configuration. This analysis is also applied to determine the response of the slider motion due to deviations in the disk surface.  相似文献   

5.
Wear of carbon coated sub-ambient pressure “pico” sliders is investigated during sweep testing as a function of interference height, slider design and sliding distance using atomic force microscopy. The wear results from atomic force microscopy measurements are compared with wear measurements of the carbon overcoat using Raman spectroscopy. The effect of interference on wear and disk burnishing is studied using acoustic emission measurements and atomic force microscopy. The results show that wear of a slider is higher for larger interference height and higher stiffness of the air-bearing.  相似文献   

6.
In this study, the wear properties of a magnetic head slider on disks lubricated by ultra-thin perfluoropolyether (PFPE) lubricants with different molecular weights were evaluated by the continuous sliding of magnetic head sliders using the slider contact by the dynamic flying height control. Two types of PFPE lubricants (Z-tetraol and D-4OH) with different molecular weights were evaluated. Results show that the slider wear depended on the coverage of the lubricant film; i.e., the lubricant film with sufficient coverage reduced slider wear. The lubricant film with a low molecular weight (low-Mw), including a lubricant material with a Fomblin and Demnum main chain, exhibited better coverage on a diamond-like carbon surface. Sliders with a low-Mw lubricant film showed less wear than those of a high molecular weight (high-Mw), and the depletion of the low-Mw lubricant film was less than that of the high-Mw lubricant film.  相似文献   

7.
A numerical model is developed to study the effect of texture on air bearing sliders for large Knudsen numbers. The effect of texture location, texture size, and density on the pressure generation is studied. First, a textured plane slider parallel to the disk surface is investigated, and the texture parameters are determined that result in optimum pressure generation. Then, a plane inclined slider is studied using optimum texture parameters found in the parallel slider case. Thereafter, the effect of texture on the steady state flying characteristics of an actual magnetic recording slider is investigated. Finally, the flying height modulation, pitch, and roll motion of a textured slider (pico and femto form factors) are determined numerically by exciting the slider using a step on the disk. Comparison of the results for textured and untextured sliders is made. It is found that textured sliders show better dynamic performance compared to the untextured sliders in terms of stiffness and damping.  相似文献   

8.
《Tribology International》2003,36(4-6):305-309
Surface reactions on magnetic recording disks have been studied during sliding with ceramic sliders in the main chamber of TOF-SIMS. Chemical change of lubricant oil in the wear track was observed by the chemical image of TOF-SIMS. The magnetic disk surface was covered with perfluoroalkyl polyether lubricant (Fomblin Zdol). The Si tip slider surface was covered with Al2O3, DLC, TiN or c-BN coating. Experimental conditions were as follows: 0.8 mN of load and a sliding speed of 0.01 m/s. Lubricant oils were decomposed with Al2O3 and TiN slider surfaces. Metal (Al, Ti) fluorides were detected by TOF-SIMS in the sliding track. Material transfer occurred by chemical wear of slider material. From TOF-SIMS observation, the decomposition of lubricant molecules was initiated at the end group of molecules (-CF2CH2OH). On the other hand, DLC and c-BN sliders suppressed the decomposition reaction of PFPE oils. In conclusion, hard and chemical inert materials such as DLC and c-BN are suitable for a long-life HDI.  相似文献   

9.
MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.  相似文献   

10.
This work investigates the flying and contact phenomena of proximity contact recording sliders and their effects on the tribological performance of thin film media by the use of acoustic emission analysis. Proximity contact recording sliders included negative pressure and tri‐rail types of tripad sliders. Mechanical and laser‐induced textured magnetic rigid disks were used in this study. The laser bump heights of laser textured disks were controlled to achieve a desired tribological performance and the relationship between the laser bump heights and acoustic emission energy during drag and start/stop testing for different slider designs was studied. Emphasis was also placed on identifying the critical parameters of media and slider designs for tribological performance improvement. An analysis of the slider body natural frequencies during flying at the operational speed has been demonstrated to be well correlated to the contact behavior at the head‐disk interface. Moreover, the environmental and lubrication effects on the fixed tracking flyability performance were investigated and the acoustic emission data also agreed fairly well with the observed degree of contamination on sliders and degradation on the textured media. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
研究计算机硬盘磁头滑块承载面结构的设计理论与加工方法。分析了现有磁头滑块的结构特点及其设计理论和设计方法;利用光刻及干法刻蚀的工艺及设备,进行了所设计磁头滑块的微加工;并利用三维表面形貌测量仪对所加工的磁头进行了加工质量分析,给出实验测量值与设计值的比较结果。  相似文献   

12.
This paper aims to establish the wear mechanisms of coated and uncoated tungsten carbide drills when drilling carbon fibre reinforced plastics (CFRP)/aluminium alloy (Al) stacks. During the drilling experiments, thrust forces were measured. A scanning electron microscope (SEM) and a numerical microscope, provided with a scanning device, were periodically used to analyse tool wear mechanisms and to measure wear progression of the tool cutting edges. For both coated and uncoated drills, abrasion was the dominant tool wear mechanism, affecting the entire cutting edges. Higher wear was observed on uncoated tools which caused a significant increase in thrust force during drilling both Al and CFRP materials. The influence of these phenomena on the quality of the holes and on the generated roughness was also discussed.  相似文献   

13.
Wear of the carbon layer of a magnetic recording disk is investigated during load/unload using a surface reflectance analyzer (SRA). Wear is determined as a function of the number of the load/unload (L/UL) cycles, the vertical head speed, the disk rotational speed, and the air bearing design. Two types of subambient pressure sliders are used in the experiments, the difference between the two designs being related to the size and position of the subambient pressure region. The load/unload behavior of the two slider types is determined numerically using a finite element air bearing simulator.  相似文献   

14.
The tribological phenomena between magnetic head sliders and thin-film disks are studied during rest, during start-up and shutdown, and during regular operation using numerical simulations. A theoretical model of stiction is first derived based on the surface tension of liquid and capillary condensation. Next, a hybrid method of FEM and BEM is developed in order to carry out high-precision microscopic contact stress analysis of a disk covered by multilayer thin films. An impact simulator based on FEM is then presented which considers the air lubricant film to be an elastic spring system determined from the solution of a compressible Reynolds equation, ft is found, that these simulators can be used to effectively study the tribology of slider/disk interactions and that the results can be used to establish qualitative design criteria for slider/disk mechanisms.  相似文献   

15.
A thin layer of Ultra High Molecular Weight Polyethylene (UHMWPE) or UHMWPE + PFPE is coated onto cylindrical aluminium (Al) pin (4.6 mm diametre) surface with the aim of providing wear resistant coating on this soft and tribologically poor metal. The coefficient of friction and wear life of the coated samples are investigated on a pin-on-disk tribometre under different normal loads (394–622 g) and two sliding speeds (0.1 and 0.31 m/s) against uncoated Al disk as the counterface. Both coatings provide coefficient of friction values in the range of 0.02–0.2 as compared to 0.4–1.0 for uncoated Al. There is tremendous improvement in the wear life of the pin, with UHMWPE + PFPE film giving wear life approximately twice to thrice higher than that with only UHMWPE film. A thin polymer film is transferred to the disk surface during sliding providing very long-term wear life (continuous low coefficient of friction) despite visual removal of the film from the pin surface. The present films will have applications in gears and bearings as solid or boundary lubricants for automotive and aerospace component.  相似文献   

16.
The continuous decrease in flying height and subsequent machining challenges spurred an interest in alternative slider materials, particularly single phase ones. Furthermore, due to a desire of the recording head industry to more closely follow semiconductor fabrication technologies, silicon has been taken into consideration as an interesting alternative to alumina-titanium carbide (Altic), used presently. In case silicon is to be introduced, extensive tribological investigations are required. This paper attempts to shed some light on some basic tribological properties of silicon sliders used on DLC coated metal disks by doing a pin-on-disk test at a low rotational velocity.  相似文献   

17.
Air bearing sliders in the Tango class use load bearing pads with inlet-throttled leading edges to control the mass flux and lift. The influence of leakage or diffusion effects is always present in real sliders. In some designs such as railed taper flat designs leakage is dominant. The behavior of such sliders must be determined with numerical methods that obscure deeper understanding. Many aspects of the behavior of Tango class sliders can be understood with the vast simplification allowed by inlet throttling. In this paper such a simplified analysis is applied to describe a complete air bearing slider composed of two pads. The conditions for static level flight are determined, as well as the linear stability of heaving and pitching oscillations. Both stable and unstable modes are identified. Either damping or amplification can result from convective effects in the absence of mechanical damping. In real implementations of Tango class sliders instability has not been observed thanks to diffusion. The present analysis can serve as a guide to select initial choices for the operating parameters that correspond to maximum convective damping.  相似文献   

18.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

19.
A solution technique is discussed which accelerates the convergence of the pivoted slider bearing problem. The technique is based on a fully populated, three-degrees-of-freedom stiffness matrix for the hydrodynamic lubricating film. This matrix is developed using a unique perturbation method which, when used in conjunction with a finite element formulation of the Reynolds equation, yields the bearing stiffnesses in a computationally efficient manner. The resulting natural convergence of this hydrodynamic stiffness approach is examined for a typical rigid disk magnetic recording slider.  相似文献   

20.
用闭合场非平衡磁控溅射离子镀PVD涂层工艺在高速钢麻花钻上沉积了CrA lTiN梯度涂层。在干式切削条件下,对45#号钢和30CrMnS iA钢进行了钻削试验。通过涂层与未涂层钻头的寿命、磨损和切削力等试验比较,表明CrA lTiN梯度涂层钻头的切削性能远优于未涂层钻头,是一种极有发展前途的刀具涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号