首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have numerically studied and experimentally visualized the fluid dynamics in a Teniente type copper converter. The three-dimensional simulation of the three-phase system was carried out using the volume of fluid (VOF) and the standard kε turbulence models implemented in a commercial solver. The numerical model includes the white metal and slag liquid phases and gas phase through air injection from 50 submerged tuyeres. Experimental observation was carried out in a 1:5 scaled water container, and mean amplitude and frequency of bath oscillation were measured. The numerical simulation has been able to predict the axial displacement of slag layer, the bath oscillation and the jet formation.  相似文献   

2.
冯巍  刘承军 《工业加热》2009,38(1):23-25
利用VOF方法建立两相湍流瞬态流动模型对FTSC结晶器内钢-渣界面运动和钢液流场分布进行了数值模拟计算,考察了水口结构、拉速对钢液流动及钢渣界面运动行为的影响作用。计算结果表明:采用不同结构的4孔水口进行浇注时,在结晶器内宽面方向一侧形成数量不等、位置不同的回流区;结晶器内的钢渣界面形状及出现液面裸露的位置由于水口结构的不同均有所差异。  相似文献   

3.
A numerical model based on the volume-of-fluid (VOF) method in sphericosymmetric geometry containing two immiscible phases is developed. The model is successfully validated using a wide class of available results. These include the inward and outward solidification problems and growth of vapor film in a saturated and metastable liquid. The model is also used to simulate the very rapid collapse phenomenon of vapor film around a hot metal in subcooled water. In each case, the results indicate that the numerical simulation successfully captures the essential physics, even at small length and time scales. It is established that the proposed numerical scheme correctly predicts the advection within the VOF framework in situations with pronounced curvature.  相似文献   

4.
通过建立一个瞬态的三维数学模型,模拟四孔氧枪顶吹超音速气体射流的特性,以及转炉中三相流的流动状态.并且利用VOF模型研究了不同操作工况对气体冲击熔池所形成的凹坑形状的影响.结果表明,凹坑形状与顶吹工况条件有着密切的关系.研究发现,氧枪枪位与凹坑的冲击深度成反比,与凹坑的冲击面积成正比.当氧气流量小于18 500m3·h-1时,冲击深度随喷吹流量的增加而降低,然而当氧气流量大于18500m3·h-1时,冲击深度随氧气流量的增加而增加.其原因可以从射流的径向和轴向方向上的速度来解释.渣层厚度增加,冲击深度也随之增加而冲击面积却随之变小.  相似文献   

5.
水煤浆气化炉激冷室内合成气穿越液池过程是复杂的气液固三相的流动过程,该过程起到合成气的进一步冷却及其所含凝渣捕集的作用。将欧拉和拉格朗日方法相结合,用VOF模型跟踪气液界面,用直接模拟蒙特卡罗方法(DSMC)计算颗粒碰撞。对含渣气体穿越液池的气液固三相流动过程进行了数值模拟,探讨了不同粒径、气流速度以及下降管出口淹没深度对气液流场以及对固体颗粒分离的影响。研究表明:气体出下降管后做流动方向急剧突变的流动,穿越过程气液形成具有一定周期的波状流动;含尘气体穿越液池过程对颗粒具有较高的捕集效率;颗粒的捕集效率随着粒径的增大而提高;随着气流出流速度以及下降管出口淹没深度的增加,液体的扰动加强,产生更多的液滴,有助于颗粒捕集效率的提高,但气流速度及淹没深度对颗粒捕获效率的影响逐渐减弱。  相似文献   

6.
A numerical investigation of the evaporation process of n-heptane and water liquid droplets impinging onto a hot substrate is presented. Three different temperatures are investigated, covering flow regimes below and above Leidenfrost temperature. The Navier–Stokes equations expressing the flow distribution of the liquid and gas phases, coupled with the Volume of Fluid Method (VOF) for tracking the liquid–gas interface, are solved numerically using the finite volume methodology. Both two-dimensional axisymmetric and fully three-dimensional domains are utilized. An evaporation model coupled with the VOF methodology predicts the vapor blanket height between the evaporating droplet and the substrate, for cases with substrate temperature above the Leidenfrost point, and the formation of vapor bubbles in the region of nucleate boiling regime. The results are compared with available experimental data indicating the outcome of the impingement and the droplet shape during the impingement process, while additional information for the droplet evaporation rate and the temperature and vapor concentration fields is provided by the computational model.  相似文献   

7.
波纹管降膜蒸发器传热性能数值模拟   总被引:1,自引:0,他引:1  
黄坤  刘振义  宋继田  李丁  张宝堃 《节能技术》2009,27(5):407-410,440
为了理解波纹管降膜蒸发过程中涉及的液膜传热过程,本文采用VOF法建立了二维气-液两相分层流动CFD模型,考虑了液相流量,传热温差,蒸发温度,液相粘度等参数对传热效果的影响,根据模拟结果给出了波纹管降膜蒸发器的流量可操作范围。模拟结果和实验数据比较吻合。  相似文献   

8.
Abstract

In this study, we present a novel fixed-grid interface-tracking method using finite volume method to simulate multidimensional rapid solidification (RS) of under-cooled pure metal. The discretized advection equation for solid fraction function is solved using the THINC/WLIC method, which is a VOF method. The governing equations for fluid flow are solved numerically using pressure-velocity coupling SIMPLE algorithm in a 2-D model with incompressible Newtonian fluid. The energy equation is modeled using an enthalpy-based formulation. The nonequilibrium solidification kinetics, interface tracking, undercooling, nucleation, heat transfer, and movement of liquid are included in the presented RS model.  相似文献   

9.
The volume-of-fluid (VOF) approach is one of the most promising methods of investigating water transport and water management in proton exchange membrane fuel cells (PEMFCs). A general PEMFC model combined with the VOF method has been developed by our group to simulate the mechanisms of fluid flows, mass and heat transport, and electrochemical reactions in a PEMFC, and it is necessary to validate the numerical model through experiments. In this paper, both the numerical model and an experimental visualization that can simulate the motion and transport behavior of liquid water in a cathode flow channel of a PEMFC are presented. Direct optical visualization is used in this work to capture the droplets’ motions with high spatial and temporal resolutions. The numerical model and experimental setup have similar geometric dimensions and operating conditions, and the results of the experiment are in good agreement with numerical simulations. Moreover, the physics of droplet and liquid water behavior based on certain material and liquid properties and the operating conditions in the fuel cell channel are also addressed. This analysis also offers some basic understanding of the mechanism of liquid droplet dynamics in numerical and experimental studies of micro-fluidics.  相似文献   

10.
针对燃油在离心喷嘴中的内部流动及其外部雾化过程,采用VOF-DPM模型对其进行了数值模拟研究。分析了压力对喷嘴出口处空气芯大小和液膜厚度的影响,得到了液膜破碎长度和雾化锥角等雾化特性,应用实验测试结果对数值模拟进行了验证,并与流体体积函数法(VOF)和离散相追踪法(DPM)进行了对比。结果表明:VOF-DPM模型可以真实反映离心喷嘴的内部流动和外部雾化特性,研究发现了与实际雾化过程符合的液膜破碎存在孔洞破碎和边缘破碎两种形式;捕捉到了在液膜表面的波动及气动力共同作用下液膜失稳破碎形成液滴的过程;燃油流动及雾化特性随着压力增加发生变化,喷嘴内空气芯直径增大,出口处液膜厚度减小,液膜的破碎长度下降。  相似文献   

11.
The dynamics of a thermally driven vapour film around a solid sphere has been investigated here with both the sphere and the annular film surrounded by a large water pool. Integral models based on constant and variable vapour-phase densities have been developed here for studying a spherico-symmetric phase change problem for two immiscible phases, vapour and liquid around a hot sphere. Governing equations for both liquid and vapour phases are converted into a set of non-linear ODEs. Effects of distinct density on interface condition and density variation of vapour phase are taken into account both in energy equation of vapour phase and also in interfacial mass and energy balance. The present models have been validated with available analytical, incompressible Volume of Fluid (VOF) and experimental results of growth and collapse of either bubble or vapour film. A simple model, based on scale analysis, was evolved that successfully captured the non-monotonic growth of the film, as observed by the more detailed models under certain degree of liquid subcooling. In addition, the case of very small thermal boundary layer in the liquid side has been successfully studied for which the VOF model required very fine grid. It has been observed that the effect of density variation in the integral model results in marginally higher film growth at higher temperature. However, the effect of radiation on the film growth was found to be quite substantial. The integral model not only incorporates the effects of vapour-phase temperature variation and radiation exchange of heat but also is computationally several-fold efficient with respect to the VOF model.  相似文献   

12.
The heat transfer and phase change processes of cryogenic liquid hydrogen (LH2) in the tank have an important influence on the working performance of the liquid hydrogen-liquid oxygen storage and supply system of rockets and spacecrafts. In this study, we use the RANS method coupled with Lee model and VOF (volume of fraction) method to solve Navier-stokes equations. The Lee model is adopted to describe the phase change process of liquid hydrogen, and the VOF method is utilized to calculate free surface by solving the advection equation of volume fraction. The model is used to simulate the heat transfer and phase change processes of the cryogenic liquid hydrogen in the storage tank with the different gravitational accelerations, initial temperature, and liquid fill ratios of liquid hydrogen. Numerical results indicate greater gravitational acceleration enhances buoyancy and convection, enhancing convective heat transfer and evaporation processes in the tank. When the acceleration of gravity increases from 10?2 g0 to 10?5 g0, gaseous hydrogen mass increases from 0.0157 kg to 0.0244 kg at 200s. With the increase of initial liquid hydrogen temperature, the heat required to raise the liquid hydrogen to saturation temperature decreases and causes more liquid hydrogen to evaporate and cools the gas hydrogen temperature. More cryogenic liquid hydrogen (i.e., larger the fill ratio) makes the average fluid temperature in the tank lower. A 12.5% reduction in the fill ratio resulted in a decrease in fluid temperature from 20.35 K to 20.15 K (a reduction of about 0.1%, at 200s).  相似文献   

13.
燃油喷雾初始破碎及二次雾化机理的研究   总被引:3,自引:0,他引:3  
基于大涡模拟LES(large eddy simulation)理论和VOF(Volume of Fluid)方法,考察了燃油喷雾初始时刻即时间尺度为微秒级的液柱破碎过程,分析了初始破碎的机理,给出了该时间尺度下液柱初始破碎过程的模型;通过对一特定条件下的柴油机喷油器的建模和喷雾过程的大涡数值模拟,获得了液柱初始时刻"伞状头部"的喷雾形态,所得计算结果与相应的试验数据符合较好;数值模拟还直观地展现了液滴背风RT破碎、哑铃型破碎以及液滴的聚集融合等液滴的二次雾化过程.同时,也说明了大涡模拟这种准直接数值方法较之DDM(discrete droplets model)方法所具有的优势和潜力.  相似文献   

14.
对150 t电弧炉冶炼过程中单支氧枪供氧流量分别为500,1 450,1 800,2 000 m<'3>/h时氧气射流冲击熔池进行了三维三相流数值模拟.模拟研究表明,随着供氧流量的增加,熔池中钢液和渣液的流动速度、裸露钢液面面积及射流的冲击深度均增大.由数值模拟和水模得到的供氧流量与射流冲击深度的规律得到了很好的吻合....  相似文献   

15.
针对微小型直接甲醇燃料电池阳极流场,采用VOF(volume of fluid)方法模拟了液体通流微小通道内壁面逸出气泡的动态行为,讨论了液体物性、气体流速、逸出气孔直径对气泡形成、生长及脱离等过程以及流动阻力的影响.结果表明:随着甲醉溶液浓度的升高,单个气泡的脱离体积、脱离时间和流动阻力系数均减小;气体流速增加,气泡...  相似文献   

16.
横管降膜流动过程中,液膜速度和温度及其分布是影响传热传质的关键因素,由于实验研究方法的局限性,实验研究结果一般只是液膜内各参数的平均值,而液膜内部的速度和温度具体分布特性却很难得到。借助FLUENT软件,利用VOF模型研究了橫管外液膜速度和温度及其分布特性。通过建立三维数理模型,模拟研究了常温常压下,橫管外液膜无相变条件下横管液膜的传热过程,并从边界层的角度解释了液膜波动对传热过程的影响。  相似文献   

17.
在气液两相流VOF(volume of fluid,VOF)模型的基础上耦合CSF(continuum surface force,CSF)表面张力模型,建立了高温平板上的铺展液滴与高温空气中悬浮液滴蒸发过程中内部非稳态流动模型,对液滴蒸发过程中内部非稳态流动进行了研究。基于相变理论,采用用户自定义函数将流体相变模型加入非稳态流动模型中进行耦合计算,获得了高温平板上的铺展液滴与高温空气中悬浮液滴蒸发过程中的内部流动及变化过程。液滴蒸发过程中非稳态内部流动由液滴表面的温度梯度引发,Marangoni流动在液滴内部形成的时间非常短,流体从液滴表面高温区域流向低温区域。计算结果表明:高温平板上随着液滴蒸发的进行,液滴内部一直保持两个对称的涡流,Marangoni流动比较稳定;高温空气环境中随着液滴蒸发的进行,液滴内部四个涡流逐渐转变成两个对称的涡流;液滴内部温度分布因Marangoni流动加强传热而变得均匀,同时由于温度分布变得均匀,Marangoni流动被削弱。  相似文献   

18.
张蔷  卢涛 《热科学与技术》2016,15(5):345-351
核电安全日益受到关注,非能动系统作为第三代核电系统具有很高的安全性。采用FLUENT流体体积分数(volume of fraction,VOF)模型和k-ε湍流模型对非能动安全壳冷却系统(passive containment cooling system,PCCS)三维平板降膜流动进行数值模拟。结果表明:1)在降膜过程中有波动现象,最终波动趋于平缓;2)水与空气逆流流动过程中发生轻微的液滴夹带;3)降膜流动受重力、表面张力与壁面黏滞力共同作用,液膜厚度沿横向分布均匀,沿高度方向平均液膜厚度越来越小,并且受进口水流速度与入口宽度影响,水流量一定时增加进口水流速度与入口宽度,平均液膜厚度增大,空气入口流速对水膜厚度影响相对较小。  相似文献   

19.
Liquid water management plays a significant role in proton exchange membrane fuel cell (PEMFC) performance, especially when the PEMFC is operating with high current density. Therefore, understanding of liquid water behavior and flooding process is a critical challenge that must be addressed. To overcome PEMFC durability problems, a liquid water flooding process is studied in the cathode side of a PEMFC with straight parallel channels and a porous layer using FLUENT® v6.3.26 software with a volume-of-fluid (VOF) algorithm and user-defined-function (UDF). The general process of liquid water flooding within this type of PEMFC cathode is investigated by analyzing the behavior of liquid water in porous layer and gas flow channels. Two important phenomena, the “first channel phenomenon” and the “last channel phenomenon”, and their effects on the flow distribution along different parallel channels are discussed.  相似文献   

20.
To the safe space operation of cryogenic storage tank, it is significant to study fluid thermal stratification under external heat leaks. In the present paper, a numerical model is established to investigate the thermal performance in a cryogenic liquid hydrogen tank under sloshing excitation. The interface phase change and the external convection heat transfer are considered. To realize fluid sloshing, the dynamic mesh coupled the volume of fluid (VOF) method is used to predict the interface fluctuations. A sinusoidal excitation is implemented via customized user-defined function (UDF) and applied on tank wall. The grid sensitivity study and the experimental validation of the numerical mode are made. It turns out that the present numerical model can be used to simulate the unsteady process in a non-isothermal sloshing tank. Variations of tank pressure, liquid and vapor mass, fluid temperature and thermal stratification are numerically investigated respectively. The results show that the sinusoidal excitation has caused large influence on thermal performance in liquid hydrogen tank. Some valuable conclusions are arrived, which is important to the depth understanding of the non-isothermal performance in a sloshing liquid hydrogen tank and may supply some technique reference for the methods of sloshing suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号