首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Energy》2005,30(6):915-931
Equations for the temporal and spatial exergy values and changes in the humid air stream and the desiccant for flow of humid air over desiccants and in desiccant-lined channels were established, and solved based on a thorough transient conjugate numerical analysis of laminar and turbulent flow, heat, and mass transfer that yielded the full velocity, temperature, and species concentration in the humid air and the solid desiccant. The desiccant was silica gel, the Reynolds number ranged from 333 to 3333, and the turbulence intensity in the turbulent flows was varied from 1% to 10%. Some of the major findings are: (1) in laminar flow, a total of ~20% of the humid air exergy is reduced in its drying, (2) in the desiccant, practically all of the exergy reduction is due to the release of absorption heat, (3) most of the exergy reduction, following the dehumidification rates, takes place in the first 1.5 s and first centimeter, (4) for the same inlet velocity, a desiccant-lined channel is more effective for dehumidification than a flat bed, and proportionally ~20% more exergy is expended, (5) turbulent flow improves dehumidification and proportionally increases exergy expenditure by 27–30%. Conclusions from these results are drawn to increase the exergy efficiency of the process.  相似文献   

2.
ABSTRACT

The influence of opposing-buoyancy mixed convection from a square cylinder in a vertical channel has been studied at Reynolds numbers (Re) = 1–100, Richardson numbers (Ri) = 0 to ?1, and blockage ratios (β) = 10–50% for air as a working fluid. The onset of a steady to a time-periodic regime is found for Ri = 0 (at Re = 35, 65, 74, and 62), Ri = ?0.5 (at Re = 12, 39, 48, and 54), and Ri = ?1 (at Re = 9, 30, 39, and 50) for β = 10%, 25%, 30%, and 50%, respectively. The initiation of flow separation is also determined. Finally, the correlations of Strouhal number, drag coefficient, and the Colburn heat transfer factor were obtained.  相似文献   

3.
ABSTRACT

The effects of cross-buoyancy mixed convection from a square cylinder in the proximity of a plane wall are studied for Reynolds number (Re) = 1–100, Richardson number (Ri) = 0–2, and gap ratio (G) = 0.25–1 at Prandtl number (Pr) = 0.7. The flow observed is steady for G = 0.25 and 0.5. The transition from a steady to a time-periodic system is observed for G = 1, and it is found at Re = 56, 60, and 74 for Ri = 0, 1, and 2, respectively. With increasing G and/or Ri, the drag coefficient and average Nusselt number increase for all Re values studied and the lift coefficient decreases with increasing Ri except at Re = 1. Maximum heat transfer augmentation is found about 89% at G = 0.5 (Re = 20, Pr = 0.7, Ri = 0) with respect to the corresponding value at G = 0.25 (Re = 20, Pr = 0.7, Ri = 0). Lastly, the correlations of drag coefficient and heat transfer have been obtained.  相似文献   

4.
This study presents the numerical simulation of the three-dimensional incompressible steady and laminar fluid flow of a trapezoidal microchannel heat sink using nanofluids as a cooling fluid. Navier–Stokes equations with a conjugate energy equation are discretized by the finite-volume method. Numerical computations are performed for inlet velocity (W in = 4 m/s, 6 m/s, and 10 m/s), hydraulic diameter D h  = 106.66 μm, and heat flux (q″ = 200 kW/m2. Numerical optimization is demonstrated as a trapezoidal microchannel heat sink design which uses the combination of a full factorial design and the genetic algorithm method. Three optimal design variables represent the ratio of upper width and lower width of the microchannel (1.2 ≤ α ≤ 3.6), the ratio of the height of the microchannel to the difference between the upper and lower width of the microchannel (0.5 ≤ β ≤ 1.866), and the volume fraction (0 ≤ φ ≤ 4%). The dimensionless entropy generation rate of a trapezoidal microchannel is minimized for fixed heat flux and inlet velocity. Numerical results for the system dimensionless entropy generation rate show that the system dimensionless friction entropy generation rate increases with Reynolds number; on the contrary, the higher the Reynolds number, the lower the system dimensionless thermal entropy generation rate. The results below show that the two-phase model gives higher enhancement than the single-phase model assuming a steadily developing laminar flow.  相似文献   

5.
A numerical study on flow and heat transfer in double-wave cross-corrugated passages with different structure parameters was conducted. The three-dimensional governing equations for mass, momentum, and heat transfer were solved using a control volume finite difference method and a validated low-Reynolds number k-? model. The effects of Reynolds number and structure parameters, including pitch ratio (P1/P2) and height ratio (H1/H2), were studied. It was found that with a decrease in height ratio, the mainstream flow changed from a pattern dominated by L-shaped flow to one dominated by Z-shaped flow, whereas pitch ratio had almost no influence on the flow pattern. The average Nusselt number Nuav first increased and then decreased gradually with either an increase in the pitch ratio or a decrease in the height ratio. Pressure drop showed the same trend as heat transfer performance. The best performance evaluation criterion number (g) of double-wave passage was nearly 20% higher than that of the corresponding single-wave passage, whereas the worst was nearly 40% lower. On the whole, the double-wave plate with H1/H2 = 5 showed better overall performance. The double-wave plate with P1/P2 = 1 had better overall performance for Re < 5,000, whereas that with P1/P2 = 3 was better for Re > 7,500.  相似文献   

6.
A two-dimensional, laminar, incompressible mixed convection with plane wall jet is simulated numerically using the stream function–vorticity method. The buoyancy is assisting the main flow. The flow and heat transfer study is carried out for Re = 300–600, Gr = 103–107, and Pr = 0.01–15. The streamlines, isotherm contours, similarity profiles, vorticity at the walls, and the local and average Nu values are presented and analyzed. In some cases, similarity behaviour is observed. The vorticity profile at the wall is similar to boundary-layer-type flow. However, for high Gr, the wall vorticity increases in the downstream direction. The average Nusselt number increases when Re, Gr, and Pr are increased.  相似文献   

7.
Two-dimensional numerical simulation is performed to analyze the thermofluidic transport around a rotating square cylinder in an unconfined medium. The convective transport originates as a consequence of the interaction between a uniform free-stream flow and the flow evolving due to the rotation of the sharp-edged body. A finite volume-based method and a body-fitted grid system along with the moving boundaries are used to obtain the numerical solution of the incompressible Navier–Stokes and energy equations. The Reynolds number based on the free-stream flow is considered in the range 10 ≤ Re ≤ 200, and the dimensionless rotational speed of the cylinder is kept 0 ≤ Ω ≤ 5. Depending on the Reynolds number and the rotational speed of the cylinder, the transport characteristics change. For the range 10 ≤ Re < 50, the flow remains steady irrespective of the rotational speed. In the range 50 ≤ Re ≤ 200, regular low-frequency Kármán vortex shedding (VS) is observed up to a critical rate of rotation (Ωcr ). Beyond Ωcr , the global convective transport shows a steady nature. The rotating circular cylinder also shows likewise degeneration of Kármán VS at some critical rotational speed. However, the heat transfer behavior varies significantly with a rotating circular cylinder. Such thermofluidic transport around a spinning square in an unconfined free-stream flow is reported for the first time.  相似文献   

8.
Influences of superimposed thermal buoyancy on the initiation of vortex shedding process behind bluff obstacles (such as circular and square cylinders in 2-D) in cross-flow at low Reynolds numbers (10 ≤ Re ≤ 40) are discussed. The flow which is steady and separated at this Reynolds number range eventually becomes unsteady periodic with the introduction of thermal buoyancy. The aim here is to numerically predict the critical value of the buoyancy parameter (Richardson number, Ri) for the onset of vortex shedding. The critical Ri is found to have a decreasing tendency for both types of cylinder geometries with increasing Re.  相似文献   

9.
A numerical study has been carried out in an open channel, which have a heated triangular cavity at the bottom wall. The remaining walls of the channel are adiabatic. Flow inlets to the channel with uniform velocity and fully developed flow are accepted at the exit of the channel. Steady state mixed convection by laminar flow has been studied by numerically solving governing equations to obtain flow field and temperature distribution under the magnetic field and Joule effect. Equations are solved via the Galerkin weighted residual finite element technique. Calculations are performed for different governing parameters such as Hartmann number (10 ≤ Ha ≤ 100), Reynolds number (100 ≤ Re ≤ 2,000), Rayleigh number (103 ≤Ra ≤ 105), Joule parameter (0 ≤ J ≤ 5), and Prandtl number (1 ≤ Pr ≤ 10). It is found that heat transfer decreases with an increasing of the Hartmann number especially at higher values of Rayleigh number. Fluid temperature at the exit of the channel also decreases with increasing of Hartmann number. Fluid temperature at the outlet of the channel becomes higher at low Reynolds number and higher Rayleigh number. However, it decreases with the decreasing of the Reynolds number.  相似文献   

10.
Numerical simulations are performed for the two-dimensional magneto-convective transport of Cu–H2O nanofluid in a vertical lid-driven square cavity in the presence of a heat-conducting and rotating circular cylinder. The left wall of the cavity is allowed to translate at a constant velocity in the vertically upward direction. Both left and right walls are maintained at isothermal but different temperatures. The top and bottom walls of the enclosure are thermally insulated. At the central region of the cavity is a heat-conducting circular cylinder which can rotate either clockwise or counterclockwise. A constant horizontal magnetic field of amplitude B0 is applied perpendicular to the vertical walls. The nanofluid is electrically conducting, while the solid walls are considered electrically insulated. Simulations are performed for various controlling parameters, such as Richardson number (0.01 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 50), dimensionless rotational speed of the cylinder (Ω = ±1), and nanoparticle concentration (0 ≤ ? ≤ 0.3), while Reynolds number based on lid velocity is fixed at a specific value (Re = 100). The flow and thermal fields are found to be susceptible to changes in the magnetic field and mixed convective strength, as well as nanoparticle concentration. However, the direction of cylinder rotation is observed to have little or no influence quantitatively on global hydrodynamic and thermal parameters.  相似文献   

11.
The effect of thermal buoyancy on the upward flow and heat transfer characteristics around a heated/cooled circular cylinder is studied. A two-dimensional finite-volume model is deployed for the analysis. The influence of aiding/opposing buoyancy is studied for the range of parameters ?0.5 ≤ Ri ≤ 0.5, 50 ≤ Re ≤ 150, and the blockage ratios of B = 0.02 and 0.25. The flow shows unsteady periodic nature in the chosen range of Reynolds numbers for the forced convective cases (Ri = 0), and the vortex shedding stops completely at some critical values of Richardson numbers.  相似文献   

12.
This paper presents a highly effective desiccant rotor that can be regenerated at a temperature between 20 and 30°C, corresponding to return air exhausted from conditioned spaces. The desiccant rotor consists of a honeycomb structure, which is coated with organic polymer desiccant materials. For a specific operating condition, the desiccant rotor functions as a rotary total heat exchanger. Desiccant rotors with thickness of 0.2 m and more lead to both higher dehumidification and temperature efficiencies compared to conventional total rotary heat exchangers in different states of the inlet process and regeneration airflows. Both the dehumidification and temperature efficiencies achieve 100% at a thickness of 0.4 m, and at rotational speeds between 100 and 300 rph. Dehumidification, together with cooling, is very effective. For the desiccant rotor with a thickness of 0.4 m, the humidity change of the process air corresponds closely to isothermal dehumidification. In terms of the dehumidification and cooling functions, the performance of the desiccant rotor with thickness of 0.2 m and more is very advantageous compared to conventional desiccant rotors and rotary total heat exchangers.  相似文献   

13.
Flow and heat transfer from a semi-circular cylinder to power-law fluids has been studied in the laminar vortex shedding regime for the range of conditions as follows: Reynolds number, 40 ≤ Re ≤ 140; Prandtl number, 0.7 ≤ Pr ≤ 50; and power-law index, 0.2 ≤ n ≤ 1.8. Extensive results are presented in terms of the streamline, vorticity and isotherm profiles, drag and lift coefficients, Strouhal number, and Nusselt number. The influence of Reynolds number, Prandtl number, and power-law index are seen to be more prominent in shear-thinning fluids (n < 1) than that in shear-thickening (n > 1) fluids. The shear-thinning fluid behavior enhances the rate of heat transfer, whereas shear-thickening fluid behavior impedes it.  相似文献   

14.
The fluid flow and heat transfer characteristics around two isothermal square cylinders arranged in a tandem configuration with respect to the incoming flow within an insulated vertical channel at low Reynolds number range (1 ≤ Re ≤ 30) are estimated in this article. Spacing between the cylinders (S) is fixed at four widths of the cylinder dimension (d) and, the blockage parameter (B) is set to 0.25. The buoyancy-aided/opposed convection is examined for the Richardson number (Ri) ranges from ?1 to 1 with a fixed Prandtl number (Pr) of 0.7. The transient numerical simulation for this two-dimensional, incompressible, laminar flow and heat transfer problem is carried out by a finite volume code based on the PISO algorithm in a collocated grid system. The results suggest that the flow remains steady for the entire range of parameters chosen in this study. The representative streamlines, vorticity, and isotherm patterns are presented to interpret the flow and thermal transport visualization. Additionally, the time average drag coefficient (C D ) as well as time and surface average Nusselt number (Nu) for the upstream and downstream cylinders are determined to elucidate the effects of Re and Ri on flow and heat transfer phenomena.  相似文献   

15.
This study presents the numerical simulations of flow characteristics of a turbulent slot jet impinging on a semicylindrical convex surface. The turbulent-governing equations are solved by a control-volume-based finite difference method with power-law scheme, and the well-known k  ? ε turbulence model associated with the wall function is used to describe the turbulent behavior and structure.

While the width of the slot nozzle is fixed at 9.38 mm, the diameter of the semicylinder is at 150 mm, and air is the working medium, the adopted modifying parameters here include the Reynolds number of the inlet flow (Re = 6000 ~ 20000), jet to impingement surface spacing (y / w = 7 ~ 13), and the entrainment or wall boundary is employed nearby the convex surface. The numerical simulations of flow fields indicate that the velocity distribution of the free jet region departs from the center with increasing y / w. When we increase Reynolds number Re, the variation of the velocity on the convex surface becomes rapid, and the turbulent kinetic energy increases.  相似文献   

16.
Forced convection heat transfer characteristics of a long, heated square cylinder blocking the flow of a power-law fluid in a channel is numerically investigated in this study. In particular, the role of the power-law index n, Reynolds number Re, Prandtl number Pr, and blockage ratio β(=B/H) on the rate of heat transfer from a square cylinder in a channel has been studied over the following ranges of conditions: 0.5 ≤ n ≤ 1.8, 60 ≤ Re ≤ 160, β = 1/4, 1/2, and 0.7 ≤ Pr ≤ 50. A semi-explicit finite-volume method is used on a nonuniform collocated grid arrangement. The third-order QUICK and the second-order central difference schemes are used to discretize the convective and diffusive terms, respectively, in the momentum and energy equations. Irrespective of the type of behavior of fluid (different values of n), the average Nusselt number increases as the blockage ratio increases. Similar to the unconfined flow configuration, the average Nusselt number increases monotonically with Reynolds and Prandtl numbers for both values of the blockage ratio and for all values of power-law index considered here. Further insights into the heat transfer phenomenon are provided by presenting isotherm contours in the vicinity of the cylinder for a range of values of the Reynolds number, Prandtl number, and power-law index for the two values of β considered in this work.  相似文献   

17.
A variation of strong turbulence anisotropy (STA) with cylinder heating, and, as a result, STA suppression, are here first elucidated in the air heated wake in the transitional state at Reynolds number Re = 300 and Richardson number Ri = 0.3. Simultaneously, new facts for variations of velocities u, v, and w, i.e., the upward, horizontal, and spanwise directions, and wake motion by cylinder heating are first elucidated. Here STA is defined such that, in velocities u, v, and w, laminar velocities arise in at least one directions but turbulence arises in the remainder of directions. 1. STA is determined to arise in isothermal and heated wakes by employing the new method. With cylinder heating, STA is found to be suppressed because the turbulent region in w is decreased, the three-dimensionality is suppressed, but the two-dimensionality and laminarization are enhanced in the heated wake.

2. With cylinder heating, the spanwise velocity |w| is found to be suppressed strongly in the probability density function (PDF), whose peak value is decreased strongly near w ≈ 0, and becomes 20% of that in the isothermal wake.

3. The above decrease in |w| is found to be equivalent to the increase of laminar state in time records. With cylinder heating, the laminar region is increased, but the region with turbulence is decreased.

4. The wake stability is extremely different in thermal flows with or without turbulence in w. When w has turbulence, here u and v are laminar, STA arises, and the thermal flow field becomes the transitional state, has instability, and is destabilized.

5. When w does not have turbulence, and is laminar, velocities u, v , and w are all laminar, form only 3-D flow, and do not have turbulence anisotropy. The wake does not have instability, and is stabilized.

  相似文献   

18.
The hydromagnetic mixed convection flow and heat transfer in a vertical lid-driven square enclosure is numerically simulated following a finite volume approach based on the SIMPLEC algorithm. Both the top and bottom horizontal walls of the enclosure are insulated, and the left and right vertical walls are kept isothermal with different temperatures. The left vertical wall is translating in its own plane at a uniform speed, while all other walls are stationary. Two cases of translational lid motion, viz. vertically upward and downward, are considered. A uniform magnetic field is applied along the horizontal direction normal to the translating wall. A heat conducting horizontal solid square cylinder is placed centrally within the outer enclosure. Simulations are conducted for various controlling parameters, such as the Richardson number (1 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 50), and Joule heating parameter (0 ≤ J ≤ 5), keeping the Reynolds number based on lid velocity fixed as Re = 100. The flow and thermal fields are analyzed through streamline and isotherm plots for various Ha, J, and Ri. Furthermore, the pertinent transport quantities such as the drag coefficient, Nusselt number, and bulk fluid temperature are also plotted to show the effects of Ha, J, and Ri on them.  相似文献   

19.
This work extends our previously reported results for the flow of and heat transfer from expanded beds of solid spheres to power–law fluids by using a modified and more accurate numerical solution procedure. Extensive results have been obtained to elucidate the effects of the Reynolds number (Re), the Prandtl number (Pr), the power–law index (n), and the bed voidage (ε) on the flow and heat transfer behavior of assemblages of solid spheres in the range of parameters: 1 ≤ Re ≤ 200, 1 ≤ Pr ≤ 1000, 0.6 ≤n ≤ 1.6, and 0.7 ≤ε ≤ 0.999999. The large values of bed voidage are included here to examine the behavior in the limit of an isolated sphere. As compared to Newtonian fluids, for fixed values of the Reynolds number and the voidage, the total drag coefficient decreases and the average Nusselt number increases for shear thinning fluids (n < 1); whereas, for shear thickening fluids (n > 1), the opposite behavior is observed. The drag results corresponding to bed voidage, ε = 0.99999, are very close to that of a single sphere; whereas, the heat transfer results approach this limit at ε = 0.999. Based on the present numerical results, simple correlations for drag coefficient and average Nusselt number are proposed which can be used to calculate the pressure drop for the flow of a power–law fluid through a bed of particles, or rate of sedimentation in hindered settling and the rate of heat transfer in assemblages of solid spheres in a new application. Broadly speaking, all else being equal, shear-thinning behavior promotes heat transfer, whereas shear-thickening behavior impedes it.  相似文献   

20.
In this work, we present the mixed convection air-cooling of two identical heat sources mounted in a vertical channel by using a porous matrix. The flow field is governed by the Navier–Stokes equation in the fluid region, the Darcy–Brinkman–Forchheimer equation in the porous region, and the thermal field by the energy equation. The effects of the Richardson number, Darcy number, thermal conductivity, and thickness of the porous matrix on the flow and heat transfer were studied. Results show that a better cooling is obtained for the channel completely filled with a porous material, except the components, with the Richardson number (Ri = Gr/Re2 = 0.25), where Gr = 104 is the Grashof number and Re = 200 is the Reynolds number, and for all Darcy numbers (10?5 ≤ Da ≤ 10?3). It was also seen that for Gr/Re2 = 20, where the buoyancy effect is stronger, the average Nusselt number with porous matrix is higher than without porous matrix for all Richardson numbers (Ri = 0.25, 1, 10, and 20). As a result, we can economize the energy of the fan. Finally, the insertion of the porous matrix with high thermal conductivity ameliorates the cooling of the heat sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号