首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hozumi Goto  Kenji Uchijo 《Wear》2004,256(6):630-638
Ball-against-disk type fretting wear tests for Al-Si alloy matrix composites in contact with bearing steel were conducted in wet air to investigate the effects of relative slip amplitude on friction and wear of the composites. In the larger range of relative slip amplitude, the Al-Si alloy-impregnated graphite composite (ALGR-MMC) shows lower friction coefficients than those of alumina short fiber-reinforced composite (ASFR-MMC) and hollow silica particle-reinforced composite (HSPR-MMC). Although the wear rate of the ALGR-MMC is higher than that of the ASFR-MMC and HSPR-MMC, the composite hardly causes damage to the mating material due to adhesion of compacted films of graphite powder and Al-Si alloy wear particles.  相似文献   

2.
Bronze–graphite composite was prepared using powder metallurgy. The friction and wear behaviors of the resulting composites in dry- and water-lubricated sliding against a stainless steel were comparatively investigated on an MM-200 friction and wear tester in a ring-on-block contact configuration. The wear mechanisms of the bronze–graphite composite were discussed based on examination of the worn surface morphologies of both the composite block and the stainless steel ring by means of scanning electron microscopy equipped with an energy dispersion spectrometry and on determination of some typical elements on the worn surfaces by means of X-ray photoelectron spectroscopy. It was found that the friction coefficient was higher under water lubrication than that under dry sliding and it showed margined change with increasing load under the both sliding conditions. A considerably decreased wear rate of the bronze–graphite composite was registered under water-lubricated sliding than under dry sliding, though it rose significantly at a relatively higher load. This was attributed to the hindered transfer of the composite onto the counterpart steel surface under water-lubricated sliding and the cooling effect of the water as a lubricant, while its stronger transfer onto the steel surface accounted for its higher wear rate under dry sliding. Thus, the bronze–graphite composite with much better wear-resistance under water-lubricated sliding than under dry sliding against the stainless steel could be a potential candidate as the tribo-material in aqueous environment.  相似文献   

3.
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined.The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.  相似文献   

4.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

5.
The objective of this investigation is to assess the influence of graphite reinforcement on tribological behavior of ZA-27 alloy. The composite with 2 wt% of graphite particles was produced by the compocasting procedure. Tribological properties of unreinforced alloy and composite were studied, using block-on-disk tribometer, under dry and lubricated sliding conditions at different specific loads and sliding speeds. The worn surfaces of the samples were examined by the scanning electron microscopy (SEM). The obtained results revealed that ZA-27/graphite composite specimens exhibited significantly lower wear rate and coefficient of friction than the matrix alloy specimens in all the combinations of applied loads (F n ) and sliding speeds (v) in dry and lubricated tests. The positive tribological effects of graphite reinforcement of ZA-27 in dry sliding tests were provided by the tribo-induced graphite film on the contact surface of composite. In test conditions, characterized by the small graphite content and modest sliding speeds and applied loads, nonuniform tribo-induced graphite films were formed leading to the increase of the friction coefficient and wear rate, with increase of the sliding speed and applied load. In conditions of lubricated sliding, the very fine graphite particles formed in the contact interface mix with the lubricating oil forming the emulsion with improved tribological characteristics. Smeared graphite decreased the negative influence of F n on tribological response of composites, what is manifested by the mild regime of the boundary lubrication, as well as by realization of the mixed lubrication at lower values of the v/F n ratio, with respect to the matrix alloy.  相似文献   

6.
Cast iron is assessed as a self-lubricating metal-base composite material. The formation of cast iron graphite films and the effective surface treatment of grey cast iron are discussed. It was found that the friction and wear behaviour of cast iron are influenced by the formation of a graphite surface layer. When cast iron surfaces are etched with Nital, they are found to be covered with a graphite film during the sliding friction process. This contributes to the protection of metallic contact points. The formation of graphite films during testing is assumed to be due to the non-elastic deformation of surface graphite. The effects of applied load, sliding velocity and lubricant are also discussed. The coefficient of friction increases with applied load and sliding velocity, and therefore lubrication becomes more important. These phenomena are discussed in terms of the formation of graphite films during the friction process.  相似文献   

7.
Industrial lubricants are invariably used with additives (with high sulfur and phosphorous contents) for tribological performance enhancement. However, these additives are environmentally very harmful. Hence, there is an urgent need to find alternate solutions for enhancing the tribological performance of lubricants and components without the use of harmful additives. The objective of this work is to investigate the feasibility of using polymer composite coatings in enhancing the tribological properties of steel surfaces in dry and base oil lubricated conditions. Pure epoxy and its composite (with 10?wt-% of graphene or graphite powder) films were coated onto steel substrates and tested under dry and base oil lubricated conditions. Friction and wear experiments were conducted on a ball on cylinder tribometer between polymer/composite coated cylindrical steel surface (shaft) and an uncoated steel ball as the counterface. Tests were conducted at various normal loads and speeds. In dry condition at 3 N load and 0.63?m s??1 sliding speed, the wear life of epoxy was increased by five times and coefficient of friction was nearly the same (0.18) on inclusion of graphene nanoparticle. In lubricated case, epoxy/graphene composite coating performed eight times and more than five times better than pure epoxy and epoxy/graphite respectively.  相似文献   

8.
A polyester composite based on betelnut fibres was fabricated and its adhesive wear and frictional performance studied using a block on disk machine at different applied loads and sliding distances at 2.8 m/s sliding velocity under dry/wet contact conditions. SEM was used to study worn surface morphology. The results revealed that betelnut fibre reinforced polyester (BFRP) composite had better wear and frictional performance under wet contact condition compared to dry. The wear mechanism of the BFRP composite was predominated by micro and macro-cracks in the polyester regions and debonding of fibres.  相似文献   

9.
碳化硼增强铝基复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
为了比较两种含量不同的碳化硼颗粒增强铝基复合材料的摩擦学性能,将其加工成销试样,在多功能摩擦磨损试验机上分别与钢盘试样进行对比摩擦磨损试验,重点研究了接触载荷和相对滑动速度对两种复合材料摩擦磨损性能的影响.结果表明:碳化硼增强铝基复合材料的磨损量随载荷与相对滑动速度的增大而增大,而摩擦因数随载荷与相对滑动速度的增大而减小,较高碳化硼含量的复合材料的耐磨性能比较低含量的复合材料好.  相似文献   

10.
Abstract

In the present study, the wear behaviour of cross ply (0/90°) C–C composite with 60 vol.-% fibres has been studied with sliding distance, applied load and sliding velocities. The measurement of specimen temperature has been carried out to study the effect of frictional heating. Furthermore, wear debris and wear track observations are correlated to understand the wear mechanism. The bulk wear increases linearly with distance after an initial running-in period. The temperature studies reveal that frictional heating is more with increase in load or sliding velocity under dry conditions, however, presence of lubrication reduces frictional heating, because exposure of surface for direct contact is reduced, and hence wear rate in all studies with lubrication is less than that under dry condition. The wear track studies show graphite powder, peeling of fibres and dislodging of the surface. At low loads, smearing of graphite powder keeps the wear rate low, but as the load increases; dislodging, delamination of surface and breaking of fibres dominate, and wear rate sharply increases, however, sliding velocity initially enhances the graphite formation reducing the wear, but as the velocity reached an optimum value, there is extensive breakage of fibres, dislodging and delamination of surface, and the wear rate increases sharply.  相似文献   

11.
Bronze-uncoated and nickel-coated graphite composites were fabricated by powder metallurgy route. The tribological behaviors of composites sliding against AISI52100 steel ball under dry sliding condition were studied using a ball-on-disk tribometer. The nickel-coated graphite composites showed much better tribological properties in comparison with bronze and uncoated graphite composite. The friction coefficient of nickel-coated graphite composites decreased with increasing nickel-coated graphite content. However, the specific wear rate increased with the increase in nickel-coated graphite. The composite containing 15?wt% nickel-coated graphite showed the best self-lubricating properties because the compacted and stable mechanical mixed layer was formed on the worn surfaces. The wear mechanism of bronze 663 is adhesive wear and abrasive wear. The uncoated nickel-coated graphite composite shows the adhesive wear and delamination characteristics. However, the wear mechanism of nickel-coated composites is mildly abrasive wear.  相似文献   

12.
《Wear》1996,199(1):82-88
The friction and wear behavior of planar random zinc-alloy matrix composites reinforced by discontinuous carbon fibres under dry sliding and lubricated sliding conditions has been investigated using a block-on-ring apparatus. The effects of fibre volume fractions and loads on the sliding wear resistance of the zinc-alloy matrix composites were studied. Experiments were performed within a load range of 50–300 N at a constant sliding velocity of 0.8 m s−1. The composites with different volume fractions of carbon fibres (0–30%) were used as the block specimens, and a medium-carbon steel used as the ring specimen. Increasing the carbon fibre volume fraction significantly decreased the coefficient of friction and wear rates of both the composites and the medium-carbon steel under dry sliding conditions. Under lubricated sliding conditions, however, increasing the carbon fibre volume fraction substantially increased the coefficient of friction, and slightly increased the wear of the medium-carbon steel, while reducing the wear of the composite.Under dry sliding conditions, an increasing load increased not only the wear rates of both the composite and the unreinforced zinc alloy, but also those of their corresponding steel rings. However, the rate of increase of wear with increasing load for both the composite and its corresponding steel ring was much smaller than for the unreinforced zinc alloy and its corresponding steel ring. The coefficient of friction under dry sliding conditions appeared to be constant as load increased within a load range of 50–150 N for both the composite and the unreinforced zinc alloy, but increased at the higher loads. Under any load the coefficient of friction of the composite was lower than half that of the unreinforced zinc alloy under dry sliding conditions.  相似文献   

13.
Use of composite material is increasing due to economical processing of complicated shapes in large quantities. Addition of fiber/particulates improves the composite strength. In the current study, the tribological characterization of polymer based particulate composites which are processed at room temperature are investigated. The friction and wear behavior of polystyrene reinforced with steel powder (polymer–metal), alumina powder (polymer–ceramic) and a mix of steel and alumina powders (polymer–metal–ceramic) have been investigated under dry sliding conditions using a pin-on-disc tribometer. Tests were conducted at different normal loads and sliding velocities at room temperature. Coefficient of friction and wear loss during the wear tests are determined. Presence of metal and ceramic particulates affects the tribological behavior of the composite. The rise in temperature of the pin during sliding was measured. The rise in contact temperature is influenced by the composition which in turn influences the wear behaviour. The polymer–ceramic composite exhibits the lowest wear rate among the materials investigated.  相似文献   

14.
The tribological behavior of polyphenylene sulfide (PPS) composites filled with micro and nano CuO particles in water-lubricated sliding condition were studied. Pin-on-disk sliding tests were performed against a steel counterface of surface roughness 0.09–0.11 μm. The lubrication regimes were established from friction data corresponding to various combinations of loads and sliding speeds. Later experiments were performed using the sliding speed of 0.5 m/s and contact pressure of 1.95 MPa, which corresponded to boundary lubrication regime. Micro CuO particles as the filler were effective in reducing the wear of PPS but nano CuO particles did not reduce wear. The steady state wear rate of PPS-30 vol.% micro CuO composite was about 10% of that of unfilled PPS and the coefficient of friction in this case was the lowest. The examination of the topography of worn pin surfaces of nano CuO-filled PPS by SEM revealed grooving features indicating three-body abrasion. The transfer films formed on the counterfaces during sliding were studied by optical microscopy and AFM. The wear behavior of the composites in water-lubricated sliding is explained using the characteristics of worn pin surfaces and transfer films on the counterface.  相似文献   

15.
H. C. How  T. N. Baker 《Wear》1997,210(1-2):263-272
The steady-state wear of aluminium alloy AA6061 and AA6061-based Saffil fibre-reinforced composites, manufactured by a PM route, was investigated with a pin-on-disc configuration under dry sliding conditions. Using a constant sliding velocity, the wear rates of the monolithic alloy and the composites increased proportionally with the applied load. The benefit of Saffil reinforcement at volume fractions of 5, 10 and 20% was not substantial at loads ranging from 4.9 to 48.3 N. As the applied load decreased to 1.1 N, the composite showed a promising improvement in wear resistance as the volume fraction of Saffil reinforcement increased. At loads of 19.2 N and above, the wear resistance of the AA6061 composite was slightly impaired when the volume fraction of the Saffil reinforcement was increased from 5 to 20%. Compared with over-aged samples, the improvement of the wear resistance due to peak-ageing was not significant, although the Vickers hardness of the peak-aged samples was double that of the over-aged samples. The surface morphology of both the monolithic alloy and the composites after testing under loads of 9.8 or 48.3 N revealed a compacted layer which comprised mainly aluminium and iron. The amount of iron transferred increased with the applied load and with the volume fraction of Saffil in the composite. Energy Dispersive X-ray (EDAX) analysis indicated that the wear debris was generated mainly from the compacted layer. On the basis of the experimental observations, delamination was considered to be the controlling wear mechanism for the monolithic specimens tested at all loads and the composite specimens tested at loads ranging from 4.9 to 48.3 N. At a load of 1.1 N, surface fatigue, which caused surface cracking, was evident for the composite specimens.  相似文献   

16.
The effects of normal load, sliding speed, and surface roughness on the friction and wear of high-purity niobium (Nb) during sliding without and with an introduction of water were systematically investigated. Increasing the normal load or sliding speed decreased the friction of the Nb under the both dry and wet conditions because the increased wear of the Nb decreased the interfacial shear strength between the steel ball and Nb by promoting the surface roughening and the production of wear debris. However, the Nb tested at the lowest sliding speed under the lowest normal load with water exhibited the lowest friction and wear due to the formation of oxide layer on the wear track. The friction and wear of the Nb tested under the dry condition decreased with increased surface roughness because the higher interfacial shear strength between the steel ball and smoother Nb resulted in the earlier breakdown of the native oxide layer and direct contact between the steel ball and Nb. However, increasing the surface roughness of the Nb increased its friction and wear under wet conditions, probably due to the easier breakdown of the oxide layer that formed on the rougher surface during sliding. The tribological results clearly showed that the introduction of water during sliding had a significant influence on the tribological properties of the Nb.  相似文献   

17.
Araya Worede Tesfay  S.K. Nath  S. Ray 《Wear》2009,266(11-12):1082-1090
Two types of composites have been developed by solidification processing by addition of 3, 4, and 5 wt% powders of oxide—TiO2 and MoO3, to molten Al-5 wt% Mg alloy. The oxide particles react with the molten alloy resulting in alumina and releasing alloying elements of Ti or Mo. Dry sliding wear behaviour of pins of cast composite, fabricated by solidification of melt-particle slurry in mold, has been determined by pin-on-disc wear tests carried out conventionally and while removing wear debris by camel brush. The accumulated volume loss in composites increases linearly with increasing sliding distance and the wear rate increases more or less linearly with increasing load. Increasing particle content decreases wear rate at a given load. The accumulated volume loss is considerably higher when wear debris is removed by camel brush during dry sliding wear. The nature of the wear debris has been confirmed to be oxidative. The relatively brighter compacted oxide transfer layer could be observed in the SEM micrograph of worn pin surfaces of the composites developed by addition of MoO3 and TiO2 respectively. Since the accumulated volume loss in wear is relatively more when the wear debris is removed during dry sliding wear test it may be inferred that wear debris is more beneficial for wear resistance through formation of transfer layer rather than its harmful role in enhancing volume loss through three body wear. At higher loads, the oxide debris are expected to get better compacted to form transfer layer, spread over a larger area of the sliding surface and thus, their removal causes a larger wear compared to that without removal of wear debris. However, a larger cover of transfer layer at higher load does not necessarily imply reduced accumulated volume loss because the wearing process is more aggravated at higher load. Apart from adhesion, micro-cutting and abrasion, the transfer layer also flakes off during dry sliding wear as indicated by the presence of chunky sheet of oxides in wear debris.  相似文献   

18.
T.C. Chou  Z. Eliezer 《Wear》1982,82(1):93-100
The mechanism of spherical particle formation was investigated in sliding systems formed of a steel ring on which either a pure Babbitt pin or a graphite fiber-Babbitt matrix composite pin was slid. Spherical Babbitt particles (indicative of tribological distress) were detected only in the pure Babbitt-steel system under conditions of dry sliding. These particles were probably formed from non-spherical wear debris by severe plastic deformation at the interface. With the composite pins, only spherical steel particles (generated in the pretest grinding operation) were found. These steel particles were, in general, clustered, smooth and hollow, indicating that they formed by a process of melting and solidification of fine grinding chips.  相似文献   

19.
P. Andersson  A. Blomberg 《Wear》1993,170(2):191-198
The study is based on unlubricated sliding self-mated tests with high-grade alumina in three different contact geometries. In each contact geometry, both mild and severe wear were observed; at the normal force of 30 N that was applied on each test, the transition into severe wear occurred at a velocity specific to the geometry. The wear transition involved surface fracture caused by mechanical and thermal stresses. Part of the wear debris produced under severe wear was compacted under friction and formed smooth tribofilms on the mating surfaces. Larger contact areas allowed slightly higher sliding velocities under a given normal force. The bearing capability of alumina, however, was quite low. Alumina can be recommended only for dry sliding applications in which the load and speed safely remain below the limit for the transition from mild to severe wear.  相似文献   

20.
R.Y. Lee  Z. Eliezer 《Wear》1984,95(2):165-175
Friction and wear experiments were conducted on couples consisting of Invar and Fe-3%Si steel pins sliding against a tool steel disk in a mild vacuum (0.1 mmHg) at room temperature. At loads below a critical value, protective films, identified as compacted oxides, were observed on the sliding surfaces. The resulting friction and wear values were very low. A critical film thickness was observed that was thinner for Invar (6 μm) than for Fe-3%Si steel (22 μm), presumably because of a larger difference between the thermal expansion coefficients of oxide and metal for Invar than for Fe-3%Si steel. This critical thickness was found to be independent of sliding speed or applied load. However, at higher loads, the critical thickness was reached at lower sliding times, probably as a result of a higher flash temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号