首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a numerical study of nanofluid condensation heat transfer inside a single horizontal smooth square tube. The numerical results are compared to previous experimental predictions, and show that the heat transfer coefficient can be improved 20% by increasing the volume fraction of Cu nanoparticles by 5% or increasing the mass flux from 80 to 110 kg/m2 s. Reducing the hydraulic diameter of the microchannel from 200 to 160 µm led to an increase in average condensation heat transfer coefficient of 10%. A new correlation estimating Nusselt number for condensation of nanofluids or pure vapor is proposed. It predicts average condensation heat transfer, with good agreement with the computed values.  相似文献   

2.
Abstract

A numerical analysis is presented for laminar forced convection condensation of saturated vapors of water and carbon dioxide on a flat surface in the reduced temperature range Ts / Tc = 0.990-0.999. The heat transfer coefficient in the region Ts / Tc < 0.998 can be correlated by using Fujii and Uehara's equation when the representative physical properties art evaluated at the film temperature. The reduction of the condensation mass flux or the heat flux at the vapor-liquid interface due to the convection term in the condensate film is expressed as a function of the phase change number with the average isobaric specific heat.  相似文献   

3.
Brendon L. Keinath 《传热工程》2019,40(9-10):830-843
ABSTRACT

Condensation of high-pressure refrigerants in small-diameter channels over a wide range of reduced pressures approaching the critical point is investigated in this two-part study. Part I presented pressure drop measurements and a two-phase pressure drop model. In this paper, Part II of the study, a condensation heat transfer model is presented. Heat transfer coefficients were measured during condensation of R404A in circular channels (inner diameter = 0.86, 1.55, 3.05 mm) over the entire quality range. The saturation temperature was varied from 30 to 60°C, and mass flux from 200 to 800 kg m-2 s-1, to evaluate their effects on condensation heat transfer coefficient. The heat transfer model is developed using a microchannel flow regime map and the void fraction model previously developed by the authors. The resulting model predicts 93.6% of the data within ±25%. The model exhibited good agreement with data from condensing ammonia and carbon dioxide, predicting 84.8% and 97% of their data within ±25%, respectively.  相似文献   

4.
ABSTRACT

Nanofluids are the combination of a base fluid with nanoparticles with sizes of 1–100 nm. In order to increase the heat transfer performance, nanoparticles with higher thermal conductivity compared to that of base fluid are introduced into the base fluid. Main parameters affecting single-phase and two-phase heat transfer of nanofluids are shape, material type and average diameter of nanoparticles, mass fraction and stability of nanoparticles, surface roughness, and fluid inlet temperature. In this study, the effect of inlet temperature of deionized water/alumina (Al2O3) nanoparticle nanofluids was both experimentally and numerically investigated. Nanofluids with a mass fraction of 0.1% were tested inside a microtube having inner and outer diameters of 889 and 1,067 µm, respectively, for hydrodynamically developed and thermally developing laminar flows at Reynolds numbers of 650, 1,000, and 1,300. According to the obtained numerical and experimental results, the inlet temperature effect was more pronounced for the thermally developing region. The performance enhancement with nanoparticles was obtained at rather higher Reynolds numbers and near the inlet of the microtube. There was a good agreement between the experimental and numerical results so that the numerical approach could be further implemented in future studies on nanofluid flows.  相似文献   

5.
ABSTRACT

Heat transfer and pressure drop characteristics of condensation for R410A inside horizontal tubes (dh = 0.25, 1, and 2 mm) at saturation temperatures Tsat = 310, 320, and 330 K are investigated numerically. The results indicate that local heat transfer coefficients and pressure drop gradients increase with increasing mass flux and vapor quality and with decreasing tube diameter and saturation temperature. Liquid film thickness also increases with increasing saturation temperature because of the lower surface tension at higher saturation temperature. When gravity dominates the condensation process, a vortex with its core lying at the bottom of the tube is found in the vapor phase region. For the annular flow regime, stream traces point from the symmetry plan to the liquid–vapor interface, where the vapor phase becomes the liquid phase. Numerical heat transfer coefficients and pressure drop gradients are compared to available empirical correlations. Two new models for heat transfer coefficients and frictional pressure drop gradients are developed based on the numerical work.  相似文献   

6.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

7.
The turbulent forced convection heat transfer of water/functionalized multi-walled carbon nanotube (FMWCNT) nanofluids over a forward-facing step was studied in this work. Turbulence was modeled using the shear stress transport K-ω model. Simulations were performed for Reynolds numbers ranging from 10,000 to 40,000, heat fluxes from 1,000 to 10,000 W/m2, and nanoparticle volume fractions of 0.00% to 0.25%. The two-dimensional governing equations were discretized with the finite volume method. The effects of nanoparticle concentration, shear force, heat flux, contraction, and turbulence on the hydraulics and thermal behavior of nanofluid flow were studied. The model predictions were found to be in good agreement with previous experimental and numerical studies. The results indicate that the Reynolds number and FMWCNT volume fraction considerably affect the heat transfer coefficient; a rise in local heat transfer coefficient was noted when both Reynolds number and FMWCNT volume fraction were increased for all cases. Moreover, the contraction of the channel passage leads to the formation of two recirculation regions with augmented local heat transfer coefficient value.  相似文献   

8.
Abstract

In former theoretical researches of nanofluid flows, numerical investigations could not agree with experimental observations, particularly regarding whether the mixing nanoparticles will enhance or deteriorate the heat transfer. In the present work, thermal driven buoyancy flows of nanofluids in a square enclosure were modeled by the use of homogeneous assumptions and the effective kinematic viscosity and thermal conductivity formulas. Thoroughly developed heat transfer coefficient is subsequently proposed, aiming to critically evaluate the performance of nanofluid heat transport. Numerical results are presented over a wide range of thermal Rayleigh number (103 ≤ Ra ≤ 106) and nanoparticles volume fraction (0.001 ≤ φ?≤?0.04). Present modeling results accurately predict both the enhancement and deterioration of the natural convection heat transfer, fully validated by former experimental observations. Overall, mathematical models and Nusselt number definitions proposed in the present work effectively enhance the reliability of numerical modeling researches on the nanofluid heat transfer. Present clarification research on the Nusselt unifications could benefit future development of thermal carrier fluid enhanced by nano-particles.  相似文献   

9.
An experimental study was performed to investigate the thermal performance of an L-shaped grooved heat pipe with cylindrical cross section, which contained 0.5 wt% water-based Al2O3 nanofluid as the working fluid. The transient performance of the heat pipe and the effect of cooling water temperature on the heat transfer characteristics of the heat pipe were investigated. The outer diameter and the length of the heat pipe were 6 mm and 220 mm, respectively. Experimental results revealed that the temperature of the cooling water has a significant effect on the thermal resistance of the heat pipe containing nanofluids as its working fluid. By increasing the cooling water temperature from 5°C to 27.5°C, the thermal resistance decreases by approximately 40%. At the same charge volume, test results indicated an average reduction of 30% in thermal resistance of heat pipes with nanofluid as compared with heat pipe containing pure water. For transient conditions, unsteady state time for nanofluids was reduced by approximately 28%, when compared with water as the working fluid.  相似文献   

10.
Heat transfer enhancement utilizing nanofluids in a two-dimensional enclosure is investigated for various pertinent parameters. The Khanafer's model is used to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion. Transport equations are model by a stream function-vorticity formulation and are solved numerically by finite-difference approach. Based upon the numerical predictions, the effects of Rayleigh number (Ra) and aspect ratio (AR) on the flow pattern and energy transport within the thermal boundary layer are presented. The diameter of the nanoparticle dp is taken as 10 nm in nanofluids. The buoyancy parameter is 103  Ra  106 and aspect ratios (AR) of two-dimensional enclosure are 1/2, 1, 2. Results show that increasing the buoyancy parameter and volume fraction of nanofluids cause an increase in the average heat transfer coefficient. Finally, the empirical equation was built between average Nusselt number and volume fraction.  相似文献   

11.
Laminar flow and heat transfer of three different types of nanofluids; Al2O3, CuO, and SiO2 suspended in ethylene glycol, in a triangular duct using delta-winglet pair of vortex generator are numerically simulated in three dimensions. The governing equations of mass, momentum and energy are solved using the finite volume method. The effects of types, concentrations, and diameter of solid nanoparticles and Reynolds number on thermal and hydraulic performance of triangular duct are examined. The range of Reynolds number, volume fraction and nanoparticles diameters is 100–1200, 1–4%, and 25–85 nm, respectively. The results indicate that the average Nusselt number increases with the particles volume fraction and Reynolds number associated with an increase in the pressure drop. The heat transfer enhancement and pressure drop penalty reduce with increasing the particles diameters. However, a reduction in the pumping power required is observed to force the nanofluids when the volume fraction increases, assuming the heat transfer coefficient remains constant.  相似文献   

12.
Confined round jet impingement cooling of a flat plate at constant heat flux with carbon dioxide at supercritical pressures was investigated numerically. The pressure ranged from 7.8 to 10.0 MPa, which is greater than the critical pressure of carbon dioxide, 7.38 MPa. The inlet temperature varied from 270 to 320 K and the heat flux ranged from 0.6 to 1.6 MW/m2. The shear-stress transport turbulence model was used and the numerical model was validated by comparison with experimental results for jet impingement heating with hot water at supercritical pressures. Radial conduction in the jet impingement plate was also considered. The sharp variations of the thermal-physical properties of the fluid near the pseudocritical point significantly influence heat transfer on the target wall. For a given heat flux, the high specific heat near the wall for the proper inlet temperature and pressure maximizes the average heat transfer coefficient. For a given inlet temperature, the heat transfer coefficient remains almost unchanged with increasing surface heat flux at first and then decreases rapidly as the heat flux becomes higher due to the combined effects of the thinner high specific heat layer and the smaller thermal conductivity at higher temperature.  相似文献   

13.
Stable dropwise condensation of saturated steam was achieved on stainless-steel tube bundles implanted with nitrogen ions by plasma ion implantation. For the investigation of the condensation heat transfer enhancement by plasma ion implantation, a condenser was constructed in order to measure the heat flow and the overall heat transfer coefficient for the condensation of steam on the outside surface of tube bundles. For a horizontal tube bundle of nine tubes implanted with a nitrogen ion dose of 1016 cm? 2, the enhancement ratio, which represents the ratio of the overall heat transfer coefficient of the implanted tube bundle to that of the unimplanted one, was found to be 1.12 for a cooling-water Reynolds number of about 21,000. The heat flow and the overall heat transfer coefficient were increased by increasing the steam pressure. The maximum overall heat transfer coefficient of 2.22 kW · m?2· K?1 was measured at a steam pressure of 2 bar and a cooling-water Reynolds number of about 2,000. At these conditions, more dropwise condensation was formed on the upper tube rows, while the lowest row received more condensate, which converted the condensation form to filmwise condensation.  相似文献   

14.
In this work, γ-Al2O3 nanoparticles with mean diameter of 10 nm are dispersed in deionized water with four nanoparticle volume concentrations of 0.25, 0.5, 0.75, and 1%. The effect of γ-Al2O3/water nanofluids on the heat transfer enhancement of heat exchangers is investigated under turbulent regime for four different volumetric flow rates of 150, 200, 250, and 300 L/h. The experimental results showed that the convective heat transfer is increased by increasing particles volume fraction as well as flow rate. The maximum enhancement obtained in Nusselt number and heat transfer coefficient was 20 and 22.8%, respectively, at Reynolds number of 6026 and particle volume fraction of 1%. The experimental Nusselt numbers of nanofluids showed good agreement with the available empirical correlation at particle volume fractions of 0.25 and 0.5%. An empirical correlation is obtained to estimate the Nusselt number of nanofluid under the conditions of this work.  相似文献   

15.
Pool boiling heat transfer coefficients of dilute stabilized Al2O3–ethyleneglycol nanofluids as possible coolant fluid are experimentally quantified. The influence of different parameters such as heat flux, heating surface nano-roughness, concentration of nanofluids and fouling resistance on the pool boiling heat transfer coefficient of alumina nanofluids has experimentally been investigated and briefly discussed. Results demonstrated that there are two heat transfer regions with different mechanisms namely free convection and nucleate boiling heat transfer. Studies on the influence of parameter demonstrated that with increasing the heat flux, the pool boiling heat transfer coefficient of nanofluids significantly increases. In contrast, with increasing the concentration of nanofluid, due to the deposition of nanoparticles on the surface, the average roughness of the surface and the heat transfer coefficient dramatically deteriorate, while a significant increase in fouling resistance is reported. Also, studies reveal asymptotic and rectilinear behaviors of fouling resistance parameter in nucleate boiling and free convective domains.  相似文献   

16.
Minsoo Kim 《传热工程》2019,40(12):973-984
ABSTRACT

The present study investigated the evaporation heat transfer coefficients of R-446A, as a low global warming potential alternative refrigerant to R-410A. The evaporation heat transfer coefficients were obtained by measuring the wall temperature of a straight stainless tube and refrigerant pressure. The heat transfer coefficients were measured for the quality range from 0.05 to 0.95, the mass flux from 100 to 400 kg/m2s, heat flux from 10 to 30 kW/m2, and saturation temperature from 5 to 10°C. The evaporation heat transfer coefficient of R-410A was verified by comparing the measured evaporation heat transfer coefficient with the value predicted by the existing correlation. The evaporation heat transfer coefficient of R-446A was measured using a proven experimental apparatus. When the heat flux was 10 kW/m2, the evaporation heat transfer coefficient of R-446A was always higher than that of R-410A. But, when the heat flux was 30 kW/m2, the evaporation heat transfer coefficient of R-446A was measured to be lower than that of R-410A near the dry-out point. The effect of the tube diameter on the R-446A evaporation heat transfer coefficient was negligible. The effect of saturation pressure on the evaporation heat transfer coefficient was prominent in the low quality region where the nucleate boiling was dominant.  相似文献   

17.
Two different kinds of non-Newtonian nanofluids were prepared by dispersion of Al2O3 and TiO2 nanoparticles in a 0.5 wt.% aqueous solution of carboxymethyl cellulose (CMC). Natural convection heat transfer of non-Newtonian nanofluids in a vertical cylinder uniformly heated from below and cooled from top was investigated experimentally. Results show that the heat transfer performance of nanofluids is significantly enhanced at low particle concentrations. Increasing nanoparticle concentration has a contrary effect on the heat transfer of nanofluids, so at concentrations greater than 1 vol.% of nanoparticles the heat transfer coefficient of nanofluids is less than that of the base fluid. Indeed it seems that for both nanofluids there exists an optimum nanoparticle concentration that heat transfer coefficient passes through a maximum. The optimum concentrations of Al2O3 and TiO2 nanofluids are about 0.2 and 0.1 vol.%, respectively. It is also observed that the heat transfer enhancement of TiO2 nanofluids is higher than that of the Al2O3 nanofluids. The effect of enclosure aspect ratio was also investigated. As expected, the heat transfer coefficient of nanofluids as well as the base fluid increases by increasing the aspect ratio.  相似文献   

18.
A numerical model has been developed for turbulent flow of hybrid nanofluids in a tube with wire coil inserts. The model was developed from van Driest eddy diffusivity equation. The model can be implemented with the consideration of new variables in eddy diffusivity of momentum and heat by using the coefficient, K and Prandtl index, ζ, respectively. The numerical analysis are undertaken for wide range of Reynolds number, different volume concentration, ? and various pitch ratio, P/D of wire coil. The numerical results were validated with the experimental data of TiO2–SiO2 nanofluids undertaken for wide range of Reynolds number and volume concentration. The final regression models of coefficient K and Prandtl index ζ were developed as a function of Reynolds number, Re or dimensionless radius, R+, volume concentration, ? and pitch ratio, P/D. A good agreement between the experimental data and numerical model indicating the validity of the numerical model for hybrid nanofluids with wire coil inserts. The numerical analysis was proved that the hybrid nanofluids contributes to higher Nusselt number and thus have better heat transfer performance compared to single nanofluids.  相似文献   

19.
The aim of this study is to determine the upper limitations of the particle volume fraction for heat transfer performance of TiO2–water nanofluids in microchannels. Nanofluids were prepared by the addition of TiO2 metallic nanoparticles into distilled water chosen as base fluid at five different volumetric ratios (0.25%, 0.5%, 1.0%, 1.5%, and 2.0%). The effects of the Reynolds number (100–750) and particle volume fraction at constant microchannel height (200 μm) on heat transfer and pressure drop characteristics were analyzed experimentally. Adding metallic oxide particles with nano dimensions into the base fluid did not cause excessive increase of friction coefficient but provided higher heat transfer than that of pure water. It was also observed that water–TiO2 nanofluid increased heat transfer up to 2.0 vol%, but heat transfer decreased after 2.0 vol%. Furthermore, the thermal resistance was calculated and it was seen that adding nanoparticles with an average diameter smaller than 25 nm into the base fluid caused the thermal resistance to decrease.  相似文献   

20.
The article reports the results of heat transfer experimental tests on water-based TiO2 (9 wt%) and SiC (3, 6, 9 wt%) nanofluids. Measurements were performed in a two-loop test rig for immediate comparison of the thermal performances of the nanofluid with the base fluid. The convective heat transfer is evaluated in a circular pipe heated with uniform heat flux (from 20 to 240 kW/m2) and flow regimes from laminar to turbulent. Tests have been performed to compare the heat transfer of nanofluids and water at the same velocity (from 0.7 to 1.6 m/s) or Reynolds number (from 300 to 6000), and they have also been compared with values calculated from some of the most widely used correlations. The analysis of the experimental data shows a strong dependence on the parameter used, while both the nanofluid and water data have the same agreement with the calculated values. Nanofluids were manufactured through a two-step procedure: laser synthesis of nanoparticles followed by dispersion in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号