首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a parametric study on mixed convection heat transfer in an inclined arc-shape cavity subjected to a moving lid. The governing equations for the inclined arc-shape cavity were derived with the incorporation of inertia and buoyant force terms and solved by using the finite-volume method and numerical grid generation scheme. The parametric study considered three physical parameters including inclination angle, Reynolds number and Grashof number, and explored the effect of these parameters on the flow field and heat transfer characteristics. Computations were conducted for the Reynolds number ranging from 100 to 1500, Grashof number from 105 to 107 and inclination angle from 150 to 600. The numerical results show that the flow pattern becomes inertia-dominant and the strength of the primary vortex generally increases as the Reynlods number increases. As the Grashof number increases, the strength of the inertial-induced vortex decreases and the strength of the buoyancy-induced vortex increases. The strength of the vortexes decreases with the increasing inclination angle and the buoyancy-induced flow becomes more dominant. The average Nusselt number increases as the Grashof number increases for all the inclination angles studied here. The local friction increases with the increasing inclination angle, and becomes significant as the Grashof number increases.  相似文献   

2.
ABSTRACT

Numerical predictions of the inclination effects on the buoyancy-induced oscillatory flow in a lid-driven arc-shaped cavity are presented in this report. Governing equations in terms of the stream function–vorticity formulation expressing the laws of conservation in mass, momentum, and energy are solved by the finite-volume method in curvilinear coordinates. Computations have been performed for various combinations of physical parameters. The inclination angle of the cavity (θ) is varied from 0° to 15°, the Reynolds number (Re) is assigned to be 100, 200, and 500, and the Grashof number (Gr) ranges from 3 × 105 to 1 × 107, while the Prandtl number is fixed at 0.71 for air. In these above ranges of the parameters, two kinds of oscillatory flow pattern have been observed, namely, the traversing-periodic and the half-periodic patterns. Attention has been focused on the effects of the inclination effects on the occurrence of these two different oscillatory flow patterns. Meanwhile, periodic variation in the mixed-convection heat transfer accompanying the oscillatory flow field has also been studied, and the results for the local and the overall Nusselt numbers are presented.  相似文献   

3.
Experimental investigation was performed on the mixed convection heat transfer of thermal entrance region in an inclined rectangular duct for laminar and transition flow. Air flowed upwardly and downwardly with inclination angles from ?90° to 90°. The duct was made of duralumin plate and heated with uniform heat flux axially. The experiment was designed for determining the effects of inclination angles on the heat transfer coefficients and friction factors at seven orientations (θ = ? 90°, ?60°, ?30°, 0°, 30°, 60° and 90°), six Reynolds numbers (Re  420, 840, 1290, 1720, 2190 and 2630) within the range of Grashof numbers from 6.8 × 103 to 4.1 × 104. The optimum inclination angles that yielded the maximum heat transfer coefficients decreased from 30° to ?30° with the increase of Reynolds numbers from 420 to 1720. The heat transfer coefficients first increased with inclination angles up to a maximum value and then decreased. With further increase in Reynolds numbers, the heat transfer coefficients were nearly independent of inclination angles. The friction factors decreased with the increase of inclination angles from ?90° to 90° when Reynolds numbers ranged from 420 to 1290, and independent of inclination angles with higher Reynolds numbers.  相似文献   

4.
ABSTRACT

The natural-convective heat transfer in an inclined square enclosure is studied numerically. The top and bottom horizontal walls are adiabatic, and the right side wall is maintained at a constant temperature T 0. The temperature of the opposing vertical wall varies by sine law with time about a mean value T 0. The system of Navier–Stokes Equations in Boussinesq approximation is solved numerically by the control-volume method with SIMPLER algorithm. The enclosure is filled with air (Pr = 1) and results are obtained in the range of inclination angle 0° ≤ α ≤ 90° for two values of Grashof number (2 × 105 and 3 × 105). It can be noted that there is a nonzero time-averaged heat flux through the enclosure at α ≠ 0°. The dependencies of time-averaged heat flux on oscillation frequency and inclination angle are depicted. It is found that the maximal heat transfer corresponds to the values of inclination angle α = 54 and dimensionless frequency f = 20π for both Grashof numbers studied (2 × 105 and 3 × 105).  相似文献   

5.
A numerical study of incompressible laminar mixed convection in the entrance region of 2-D vertical and inclined channels using the regularized lattice Boltzmann method is presented. Individual distribution functions with lattice types D2Q9 and D2Q5 are considered to solve fluid flow and thermal fields, respectively. Reynolds number is held constant at 100 and Grashof number is varied from 103 to 106. The channel inclination angle is varied from 0 to 60°. The aspect ratio of channel is equal to 5. Predicted velocity and temperature fields are in good agreement with velocity and temperature fields found from the finite volume code Fluent.  相似文献   

6.
Mixed convection heat transfer in rectangular channels has been investigated computationally under various operating conditions. The lower surface of the channel is subjected to a uniform heat flux, sidewalls are insulated and adiabatic, and the upper surface is exposed to the surrounding fluid. Solutions were obtained for Pr=0.7, inclination angles 0° ≤ θ ≤ 90°, Reynolds numbers 50 ≤ Re ≤ 1000, and modified Grashof numbers Gr = 7.0×105 to 4.0×106. The three-dimensional elliptic governing equations were solved using a finite volume based computational fluid dynamics (CFD) code. From a parametric study, local Nusselt number distributions were obtained and effects of channel inclination, surface heat flux and Reynolds number on the onset of instability were investigated. Results obtained from the simulations are compared with the literature and a parallel conducted experimental study, from which a good agreement was observed. The onset of instability was found to move upstream for increasing Grashof number. On the other hand, onset of instability was delayed for increasing Reynolds number and increasing inclination angle.  相似文献   

7.
In this article, natural convection in a porous triangular cavity has been analyzed. Bejan's heatlines concept has been used for visualization of heat transfer. Penalty finite-element method with biquadratic elements is used to solve the nondimensional governing equations for the triangular cavity involving hot inclined walls and cold top wall. The numerical solutions are studied in terms of isotherms, streamlines, heatlines, and local and average Nusselt numbers for a wide range of parameters Da (10?5–10?3), Pr (0.015–1000), and Ra (Ra = 103–5 × 105). For low Darcy number (Da = 10?5), the heat transfer occurs due to conduction as the heatlines are smooth and orthogonal to the isotherms. As the Rayleigh number increases, conduction dominant mode changes into convection dominant mode for Da = 10?3, and the critical Rayleigh number corresponding to the on-set of convection is obtained. Distribution of heatlines illustrate that most of the heat transport for a low Darcy number (Da = 10?5) occurs from the top region of hot inclined walls to the cold top wall, whereas heat transfer is more from the bottom region of hot inclined walls to the cold top wall for a high Darcy number (Da = 10?3). Interesting features of streamlines and heatlines are discussed for lower and higher Prandtl numbers. Heat transfer analysis is obtained in terms of local and average Nusselt numbers (Nu l , Nu t ) and the local and average Nusselt numbers are found to be correlated with heatline patterns within the cavity.  相似文献   

8.
《Applied Thermal Engineering》2007,27(5-6):1036-1042
Laminar mixed convective heat transfer in two-dimensional shallow rectangular driven cavities of aspect ratio 10 is studied numerically. The top moving lid of the cavity is at a higher temperature than the bottom wall. Computations are performed for Rayleigh numbers ranging from 105 to 107 keeping the Reynolds number fixed at 408.21, thus encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. The fluid Prandtl number is taken as 6 representing water. The effects of inclination of the cavity on the flow and thermal fields are investigated for inclination angles ranging from 0° to 30°. Interesting behaviours of the flow and thermal fields with increasing inclination are observed. The streamline and isotherm plots and the variation of the local and average Nusselt numbers at the hot and cold walls are presented. The average Nusselt number is found to increase with cavity inclination. The rate of increase of the average Nusselt number with cavity inclination is mild for dominating forced convection case while it is much steeper in dominating natural convection case.  相似文献   

9.
In this paper, natural convection heat transfer in an inclined square cavity filled with pure air (Pr = 0.71) was numerically analyzed with the lattice Boltzmann method. The heat source element is symmetrically embedded over the center of the bottom wall, and its temperature varies sinusoidally along the length. The top and the rest part of the bottom wall are adiabatic while the sidewalls are fixed at a low temperature. The influences of heat source length, inclination angle, and Rayleigh number (Ra) on flow and heat transfer were investigated. The Nusselt number (Nu) distributions on the heat source surface, the streamlines, and the isotherms were presented. The results show that the inclination angle and heat source length have a significant impact on the flow and temperature fields and the heat transfer performance at high Rayleigh numbers. In addition, the average Nu firstly increases with γ and reaches a local maximum at around γ = 45°, then decreases with increasing γ and reaches minimum at γ = 180° in the cavity with ? = 0.4. Similar behaviors are observed for ? = 0.2 at Ra = 104. Moreover, nonuniform heating produces a significant different type of average Nu and two local minimum average Nu values are observed at around γ = 45° and γ = 180° for Ra = 105 in the cavity with ? = 0.2.  相似文献   

10.
Natural convection in a triangular cavity filled with air is investigated numerically. In this paper, the cavity is exposed to air stream cooling exerted on its sides and it is heated by a fixed heat flux from the base. The air inside the cavity is assumed to be laminar and obeying Boussinesq approximation. The governing equations are solved numerically using the finite volume technique with SIMPLE algorithm. The results are achieved with a range of Rayleigh number (104 < Ra < 107), free stream Reynolds number (103 < Re < 1.5 × 104), four aspect ratios (AR = 0.25, 0.5, 0.866, and 1) and five inclination angles (? = 0°, 30°, 45°, 60°, 90°). The influence of these parameters is displayed on the stream function, isotherms lines, local and average Nusselt numbers. The results reveal that the heat transfer rate increases as Rayleigh number, free stream Reynolds number and AR increase. The highest heat transfer rate is obtained at ? = 0° while the lowest one is obtained at ? = 90°. Furthermore, as the AR augments, the local and average Nusselt numbers are enhanced and the stream function is formed of two symmetric counter‐rotating vortices.  相似文献   

11.
In this study, a Lattice Boltzmann method is used to simulation steady-state, laminar, free convection in two-dimensional annuli between a heated triangular inner cylinder and elliptical outer cylinder. The gap is filled with air as the working fluid. A constant temperature boundary condition is imposed on both the inner and outer surfaces. The study is performed for different inclination angles of inner triangular and outer elliptical cylinders at Ra = 104. The inclination angle is varied from 0° to 120° for the triangular cylinder and from 0° to 90° for the elliptical cylinder. Furthermore, the vertical and horizontal eccentricity of the inner cylinder is investigated. The results for the inner and outer cylinders are presented in the form of isotherms, streamlines, and local and average Nusselt numbers. The results indicated that overall average Nusselt number has a type of nonlinear polynomial function with the triangular inclination angles and an approximately linear relation with the elliptical inclination angles. Also, the overall average Nusselt number decreases with the inclination of the outer elliptical cylinder. In addition, the results show that maximum heat transfer rate is reached when the inner cylinder is located at the center of the elliptical cylinder and at the lowest possible location vertically.  相似文献   

12.
A study is made of natural convection within an inclined porous layer saturated by an electrically conducting fluid in the presence of a magnetic field. The long side walls of the cavity are maintained at a uniform heat flux condition, while the short side walls are thermally insulated. On the basis of a parallel flow model, the problem is solved analytically to obtain a set of closed-form solutions. Scale analysis is applied to the case of a boundary layer flow regime in a vertical enclosure. Comparison between the fully numerical and analytical solutions is presented for 0 ≤, Ra ≤, 103 ≤, Ha ≤, 10, and -180 ° ≤, Φ ≤, 180°, where Ra, Ha, and Φ denote the Rayleigh number, Hartmann number, and inclination of the enclosure, respectively. It is found that the analytical solutions can faithfully predict the influence of a magnetic field on the flow structure and heat transfer for a wide range of the governing parameters. For a boundary layer flow regime in a vertical cavity the results of the scale analysis agree well with approximations of the analytical solution. For this situation it is found that the Nusselt number is Nu = O.5Ra2/5 / ( 1 + Ha2) 2/5. For a horizontal cavity heated from below the critical Rayleigh number for the onset of motion, determined from a stability analysis, corresponds to that for the existence of unicellular convection using the parallel flow approximation. In general, it is demonstrated that, with the application of an external magnetic field, the temperature and velocity fields are significantly modified and the Nusselt number is decreased with increasing Ha.  相似文献   

13.
Magnetohydrodynamic (MHD) natural convection flow and associated heat convection in an oriented elliptic enclosure has been investigated with numerical simulations. A magnetic field was applied to the cylindrical wall of the configuration, the top and bottom walls of the enclosure were circumferentially cooled and heated, respectively, while the extreme ends along the cross‐section of the elliptic duct were considered adiabatic. The full governing equations in terms of continuity, momentum, and energy transport were transformed into nondimensional form and solved numerically using finite difference method adopting Gauss–Seidel iteration technique. The selected geometrical parameters and flow properties considered for the study were eccentricity (0, 0.2, 0.4, 0.6, and 0.8), angle of inclination (0°, 30°, 60°, and 90°), Hartmann number (0, 25, and 50), Grashof number (104, 105, and 106), and Darcy number (10?3, 10?4, and 10?5). The Prandtl number was held constant at 0.7. Numerical results were presented by velocity distributions as well as heat transfer characteristics in terms of local and average Nusselt numbers (i.e., rate of heat transfer). The optimum heat transfer rate was attained at e value of 0.8. Also, the heat transfer rate increased significantly between the angles of inclination 58° and 90°. In addition, Hartmann number increased with decreased heat transfer rate and flow circulation. A strong flow circulation (in terms of velocity distribution) was observed with increased Grashof and Darcy numbers. The combination of the geometric and fluid properties therefore can be used to regulate the circulation and heat transfer characteristics of the flow in the enclosure.  相似文献   

14.
The problem of two-dimensional natural convection flow of a dielectric fluid in a square inclined enclosure with a fin placed on the hot wall is investigated numerically. The fin thickness and length are 1/10 and 1/2 of the enclosure side, respectively. The Rayleigh number is varied from 103 to 5 × 105 and the solid to fluid thermal conductivity ratio is fixed at 103. The enclosure tilt or inclination angle is varied from 0° to 90°. The streamlines and isotherms within the enclosure are produced and the heat transfer is calculated. It is found that for 2.5 × 104 ≤ Ra ≤ 2.5 × 105, the average Nusselt number is maximum when γ = 0° and minimum when γ = 90°. For Ra = 5 × 105, the values of enclosure tilt angle for which the average Nusselt number is maximum or minimum are completely different due to the transition to unsteady state. In this case, the maximum heat transfer is obtained for γ = 60°, while the minimum heat transfer is predicted for γ = 0°. Monomial correlations relating the average Nusselt number with the different values of the Rayleigh number from 104 to 105 are determined for two different angles, γ = 0° and γ = 90°.  相似文献   

15.
In the present paper a numerical study has been performed of the flow behavior and natural convection heat transfer characteristics of liquid fluids contained in an inclined arc-shaped enclosure. The governing equations are discretized using the finite-volume method and curvilinear coordinates. The Prandtl number (Pr) of the liquid fluids is assigned to be 4.0 and the Grashof number (Gr) is ranged within the regime 1 × 105 ≦ ≦ 4 × 106. On the other hand, the inclination angle (θ) of the enclosure is varied within 0° ≦ θ ≦ 360°. Of major concern are the effects of the inclination and the buoyancy force on the flow and the thermal fields, and based on the numerical data of the thermal field the local and overall Nusselt numbers are calculated. Results show that the arc-shaped enclosure for Pr = 4.0 at Gr = 4 × 106 and θ = 90° exhibits the best heat transfer performance. The poor heat transfer performance for Pr = 4.0 fixed at Gr = 1 × 105 and θ = 180° exhibits the arc-shaped enclosure, respectively. As the value of Grashof number is elevated from 105 to 4 × 106, at θ = 90°, the magnitude of Nu is elevated from 13.946 to 25.3 (81.4% increase); however, at θ = 180°, the magnitude is elevated from 11.655 to 13.475 (15.6% increase) only.  相似文献   

16.
A numerical study has been carried out in an open channel, which have a heated triangular cavity at the bottom wall. The remaining walls of the channel are adiabatic. Flow inlets to the channel with uniform velocity and fully developed flow are accepted at the exit of the channel. Steady state mixed convection by laminar flow has been studied by numerically solving governing equations to obtain flow field and temperature distribution under the magnetic field and Joule effect. Equations are solved via the Galerkin weighted residual finite element technique. Calculations are performed for different governing parameters such as Hartmann number (10 ≤ Ha ≤ 100), Reynolds number (100 ≤ Re ≤ 2,000), Rayleigh number (103 ≤Ra ≤ 105), Joule parameter (0 ≤ J ≤ 5), and Prandtl number (1 ≤ Pr ≤ 10). It is found that heat transfer decreases with an increasing of the Hartmann number especially at higher values of Rayleigh number. Fluid temperature at the exit of the channel also decreases with increasing of Hartmann number. Fluid temperature at the outlet of the channel becomes higher at low Reynolds number and higher Rayleigh number. However, it decreases with the decreasing of the Reynolds number.  相似文献   

17.
Local heat transfer coefficients and flow parameters were measured for air-water flow in a pipe in the horizontal and slightly upward inclined (2°, 5°, and 7°) positions. The test section was a 27.9 mm stainless steel pipe with a length to diameter ratio of 100. For this systematic experimental study, a total of 758 data points were taken for horizontal and slightly upward inclined (2°, 5°, and 7°) positions by carefully coordinating the liquid and gas superficial Reynolds number combinations. These superficial Reynolds numbers were duplicated for each inclination angle. The heat transfer data points were collected under a uniform wall heat flux boundary condition ranging from about 1,800–10,900 W/m2. The superficial Reynolds numbers ranged from about 740 to 26,000 for water and about 560 to 48,000 for air. A comparison of heat transfer data and flow visualization revealed that the heat transfer results were significantly dependent on the superficial liquid and gas Reynolds numbers, inclination angle, and flow pattern. The experimental data indicated that even in a slightly upward inclined pipe, there is a significant effect on the two-phase heat transfer of air-water flow. Flow pattern maps and flow visualization results for different inclination angles are also presented and discussed.  相似文献   

18.
The present work deals with numerical modeling of mixed convection flow in a two-sided lid driven inclined square enclosure filled with water-Al2O3 nanofluid. The limiting cases of a cavity heated from below and cooled from above and the one differentially heated are recovered respectively for inclination angles 0° and 90°. The moving walls of the cavity are pulled in opposite directions with the same velocity and maintained at constant but different temperatures while the remaining walls are kept insulated. The numerical resolution of the studied problem is based on the lattice Boltzmann method. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on fluid flow and heat transfer characteristics. The governing parameters of this problem are the Richardson number (varied from 0.1 to 106), the nanoparticles volume fraction (varied from 0 to 0.04) and the inclination angle (varied from 0° to 180°). The critical conditions leading to the transition from monocellular flow to multicellular flow and vice versa are determined. In the common ranges of Richardson number and inclination angle where both monocellular and tri-cellular patterns coexist, the heat transfer is seen to be strongly reduced by the latter.  相似文献   

19.
We have numerically reported the buoyancy induced flow and heat transfer characteristics inside an inclined L-shaped enclosure. A control volume based Finite-Volume method is applied to discretize the governing equations with collocated variable arrangement. SIMPLE algorithm is used and the system of equations is solved by Stone's SIP solver with full multigrid acceleration. Results are presented in the form of the average Nusselt number for a range of inclination angle, θ = 0°–360°; Rayleigh number, Ra = 1–105; and aspect ratio, A = 0.1–0.5.  相似文献   

20.
Laminar natural convection in inclined enclosures filled with different fluids was studied by a numerical method. The enclosure was divided by a solid impermeable divider. One side of partition of enclosure was filled with air and the other side had water. The enclosure was heated from one vertical wall and cooled from the other while horizontal walls were adiabatic. The governing equations which were written in stream function–vorticity form were solved using a finite difference technique. Results were presented by streamlines, isotherms, mean and local Nusselt numbers for different thermal conductivity ratios of solid impermeable material (plywood or concrete), inclination angle (0° ≤ ? ≤ 360°) and Grashof numbers (103 ≤ Gr ≤ 106). The code was validated by earlier studies, which are available in the literature on conjugate natural convection heat transfer. Analytical solutions were obtained for low Grashof numbers. Obtained results showed that both heat transfer and flow strength strongly depended on thermal conductivity ratio of the solid material of partition, inclination angle and Grashof numbers. The heat transfer was lower in the air side of the enclosure than that of the water side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号