首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this study, different biomass gasification applications and strategies that affect the gasifier which makes electricity in Turkey were investigated. Gasification technologies provide the opportunity to convert renewable biomass materials into clean fuel gases or synthesis gases. These gaseous products can be burned to generate heat or electricity, or they can potentially be used in the synthesis of liquid transportation fuels, hydrogen, or chemicals. Gasification offers a combination of flexibility, efficiency, and environmental acceptability that is essential in meeting future energy requirements. The future of biomass electricity generation lies in biomass integrated gasification/gas turbine technology, which offers high-energy conversion efficiencies.  相似文献   

2.
Gasification as a thermo-chemical process is defined and limited to combustion and pyrolysis. The gasification of biomass is a thermal treatment, which results in a high production of gaseous products and small quantities of char and ash. The solid phase usually presents a carbon content higher than 76%, which makes it possible to use it directly for industrial purposes. The gaseous products can be burned to generate heat or electricity, or they can potentially be used in the synthesis of liquid transportation fuels, H2, or chemicals. On the other hand, the liquid phase can be used as fuel in boilers, gas turbines or diesel engines, both for heat or electric power generation. However, the main purpose of biomass gasification is the production of low- or medium heating value gas which can be used as fuel gas in an internal combustion engine for power production. In addition to limiting applications and often compounding environmental problems, these technologies are an inefficient source of usable energy.  相似文献   

3.
Biomass micron fuel (BMF) produced from feedstock (energy crops, agricultural wastes, forestry residues and so on) through an efficient crushing process is a kind of powdery biomass fuel with particle size of less than 250 μm. Based on the properties of BMF, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, characteristics of BMF air gasification were studied in the gasifier. Without outer heat energy input, the whole process is supplied with energy produced by partial combustion of BMF in the gasifier using a hypostoichiometric amount of air. The effects of equivalence ratio (ER) and biomass particle size on gasification temperature, gas composition, gas yield, low-heating value (LHV), carbon conversion and gasification efficiency were studied. The results showed that higher ER led to higher gasification temperature and contributed to high H2-content, but too high ER lowered fuel gas content and degraded fuel gas quality. A smaller particle was more favorable for higher gas yield, LHV, carbon conversion and gasification efficiency. And the BMF air gasification in the cyclone gasifier with the energy self-sufficiency is reliable.  相似文献   

4.
中国生物质能利用技术评价   总被引:37,自引:0,他引:37  
本文针对目前我国已有的生物质能利用技术进行技术评价,主要有生物质燃烧技术(包括炉灶燃烧技术、锅炉燃烧发电技术和生物质型煤技术)、生物质气化技术(包括生物质气化技术、生物质气化发电技术)和生物质热裂解液化技术。本文在阐述我国生物质能源开发利用的意义的基础上,综述了上述各种技术发展现状与近年来的应用情况,对我国生物质能利用技术的发展有参考价值。  相似文献   

5.
Flameless combustion is a well known measure to reduce NOx emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO2 or H2O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O2. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO2 and H2O, and the thereby reduced concentration of O2 in the reaction zone the local partial pressures of CO2 and H2O become significantly higher than that for O2. Therefore, the char reaction with CO2 and H2O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account.  相似文献   

6.
生物质热解气化技术的现状、应用和前景   总被引:5,自引:1,他引:5  
生物质能的利用正在日益引起人们的关注。现在,生物质热解气化被用作生产燃料气的普遍技术路线,生产的燃料气被广泛应用于锅炉、发动机、气轮机或燃料电池。本文概述了目前国内外生物质热解和气化技术的现状,特别介绍了国内外几种比较新颖的技术,并且简要地阐述了这些技术的机理、应用以及优点,同时部分地给出了这些技术的流程图和示意图。  相似文献   

7.
This study investigates the characteristics of fuel NOx formation resulting from the combustion of producer gas derived from biomass gasification using different feedstocks. Common industrial burners are optimized for using natural gas or coal-derived syngas. With the increasing demand in using biomass for power generation, it is important to develop burners that can mitigate fuel NOx emissions due to the combustion of ammonia, which is the major nitrogen-containing species in biomass-derived gas. In this study, the combustion process inside the burner is modeled using computational fluid dynamics (CFD) with detailed chemistry. A reduced mechanism (36 species and 198 reactions) is developed from GRI 3.0 in order to reduce the computation time. Combustion simulations are performed for producer gas arising from different feedstocks such as wood gas, wood + 13% DDGS (dried distiller grain soluble) gas and wood + 40% DDGS gas and also at different air equivalence ratios ranging from 1.2 to 2.5. The predicted NOx emissions are compared with the experimental data and good levels of agreement are obtained. It is found out that NOx is very sensitive to the ammonia content in the producer gas. Results show that although NO–NO2 interchanges are the most prominent reactions involving NO, the major NO producing reactions are the oxidation of NH and N at slightly fuel rich conditions and high temperature. Further analysis of results is conducted to determine the conditions favorable for NOx reduction. The results indicate that NOx can be reduced by designing combustion conditions which have fuel rich zones in most of the regions. The results of this study can be used to design low NOx burners for combustion of gas mixtures derived from gasification of biomass. One suggestion to reduce NOx is to produce a diverging flame using a bluff body in the flame region such that NO generated upstream will pass through the fuel rich flame and be reduced.  相似文献   

8.
Application of the process intensification concept to biomass gasification is relatively recent, but is arousing growing interest by providing true opportunities for developing cost-effective high quality syngas, particularly for small to medium-scale installations, adapted to the economic context of most regions in the world. In this highly swarming context towards process intensification, this article provides an overview of the different strategies which are reported in the literature to perform syngas or H2 purification and conditioning into the gasifier. A promising avenue towards process intensification consists in integrating several functionalities into suitable fluidized bed gasifiers, such as catalytic tar cracking/reforming, CO2 elimination, H2 separation and the elimination of particles and other contaminants. The development of new catalytic integrated gasification concepts is also proposed to achieve high conversion performances while pursuing significant process intensification. This strategy is illustrated by relevant examples such as the design of short contact time partial oxidation catalytic reactors, the implementation of specific reaction media such as supercritical water or molten metal, or the realisation of a close contact between solid catalysts and lignocellulosic biomass. Most of these different technologies are not mature yet and research effort has to be performed for optimizing each of these approaches, calling for a multidisciplinary and multi-scale approach integrating catalysis, chemistry, reaction and process engineering. The design of new advanced gasification reactor concept still has to be pursued in order to achieve the challenging one-step production of a high quality syngas from biomass gasification. The implementation of such innovative biomass gasification breakthrough concepts could be one of the most promising ways of process intensification resulting in a significant cut down of the production costs of synthesis gas and H2 derived from biomass.  相似文献   

9.
10.
The use of biomass for energy generation is getting increasing attention. At present, gasification of biomass is taken as a popular technical route to produce fuel gas for application in boilers, engine, gas turbine or fuel cell. Up to now, most of researchers have focused their attentions only on fixed-bed gasification and fluidised bed gasification under air-blown conditions. In that case, the producer gas is contaminated by high tar contents and particles which could lead to the corrosion and wear of blades of turbine. Furthermore, both the technologies, particularly fixed bed gasification, are not flexible for using multiple biomass-fuel types and also not feasible economically and environmentally for large scale application up to 10–50 MWth. An innovative circulating fluidised bed concept has been considered in our laboratory for biomass gasification thereby overcoming these challenges. The concept combines and integrates partial oxidation, fast pyrolysis (with an instantaneous drying), gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas, in terms of low tar level and particulates carried out in the producer gas, and overall emissions reduction associated with the combustion of producer gas. This paper describes our innovative concept and presents some experimental results. The results indicate that the gas yield can be above 1.83 N m3/kg and the fluctuation of the gas yield during the period of operation is 3.3% at temperature of 750 °C. Generally speaking, the results achieved support our concept as a promising alternative to gasify biomass for the generation of electricity.  相似文献   

11.
Thermochemical conversion by gasification process is one of the most relevant technologies for energy recovery from solid fuel, with an energy conversion efficiency better than other alternatives like combustion and pyrolysis. Nevertheless, the most common technology used in the last decades for thermochemical conversion of solid fuel through gasification process, such as coal, agriculture residues or biomass residues are the fluidized bed or bubbling fluidized bed system. For these gasification technologies, an inert bed material is fed into reactor to improve the homogenization of the particles mixture and increase the heat transfer between solid fuel particles and the bed material. The fluidized bed reactors usually operate at isothermal bed temperatures in the range of 700–1000 °C, providing a suitable contact between solid and gas phases. In this way, chemical reactions with high conversion yield, as well as an intense circulation and mixing of the solid particles are encouraged. Moreover, a high gasification temperature favours carbon conversion efficiency, increasing the syngas production and energy performance of the gasifier. However, the risk of eutectic mixtures formation and its subsequent melting process are increased, and hence the probability of bed agglomeration and the system collapse could be increased, mainly when alkali and alkaline earth metals-rich biomasses are considered. Generally, bed agglomeration occurs when biomass-derived ash reacts with bed material, and the lower melting temperature of ash components promotes the formation of highly viscous layers, which encourages the progressive agglomerates creation, and consequently, the bed collapse and system de-fluidization. Taking into account the relevance of this topic to ensure the normal gasification process operating, this paper provides several aspects about bed agglomeration, mostly for biomass gasification systems. In this way, chemistry and mechanism of bed agglomeration, as well as, some methods for in-situ detection and prediction of the bed agglomeration phenomenon are reviewed and discussed.  相似文献   

12.
A novel integrated drying and gasification of microalgae wet biomass process, involving a chemical-looping combustion (CLC) option to supply energy, is developed using Aspen Plus. The integrated gasification system consists of four primary units, including (i) a wet biomass drying unit, (ii) the gasification system, (iii) the CLC section, and (iv) the gas purification process. The model shows a good accuracy (relative error < 10%) in predicting the product compositions as compared to the experimental results under consistent operating conditions. The performance of the integrated gasification system is evaluated using Spirulina microalgae at various moisture contents (0–45 wt%). The effect of gasifying agents O2/steam and the fraction of the produced char used in the CLC section on the gasification performance is also evaluated. The tar is successfully reformed into syngas in the pyrolysis stage by adjusting the O2 flow rate. The C (char) to CLC provides to a positive effect on the syngas composition, particularly for gasification of wet biomass, but brings an adverse impact on the yield of the syngas product. The integration of the CLC process and CO2 absorber in the gasification system provides high-quality syngas by removing CO2. The separated pure CO2 can be used as a feedstock for other chemical industries.  相似文献   

13.
Within the carbon constrained world, biomass-based power production is expected to constitute one of the candidates for CO2 abatement. However, within the framework of a liberalised energy market, biomass power systems must be competitive from efficiency and cost point of view for their successful commercial breakthrough. Integrated gasification combined cycles (IGCC) based on pressurised biomass gasification, coupled with economical acceptable hot gas clean-up systems, are one of the most promising options. In this study, a technical and economic assessment is carried out of alternative power plant concepts with the aid of computer simulation tools. Various gas turbine plant sizes are considered ranging from 10 to 70 MWe and their performance is evaluated. Apart from stand-alone power systems, the study is complemented with cases linked with a coal-fired power plant by parallel integration of a gas turbine with the existing steam cycle.  相似文献   

14.
增压部分气化燃煤联合循环(PPG-CC) 发电系统热力性能分析   总被引:3,自引:0,他引:3  
部分气化燃煤联合循环发电系统是目前具有发展前景的洁净煤发电技术之一。本文提出了将空气和蒸汽先经过高温预热再送入气化炉的部分气化联合循环系统新方案,对该方案进行了热力性能计算,并与常规的不预热空气/蒸汽的部分气化联合循环系统热力性能进行了分析比较。计算结果说明了高温预热空气/蒸汽的部分气化联合循环系统有利于提高煤气热值和循环系统效率,对于劣质煤以及生物质气化生成较高热值煤气也具有重要意义。  相似文献   

15.
Paul Denholm   《Renewable Energy》2006,31(9):1355-1370
A completely renewable baseload electricity generation system is proposed by combining wind energy, compressed air energy storage, and biomass gasification. This system can eliminate problems associated with wind intermittency and provide a source of electrical energy functionally equivalent to a large fossil or nuclear power plant. Compressed air energy storage (CAES) can be economically deployed in the Midwestern US, an area with significant low-cost wind resources. CAES systems require a combustible fuel, typically natural gas, which results in fuel price risk and greenhouse gas emissions. Replacing natural gas with synfuel derived from biomass gasification eliminates the use of fossil fuels, virtually eliminating net CO2 emissions from the system. In addition, by deriving energy completely from farm sources, this type of system may reduce some opposition to long distance transmission lines in rural areas, which may be an obstacle to large-scale wind deployment.  相似文献   

16.
The production of Synthetic Natural Gas from biomass (Bio-SNG) by gasification and upgrading of the gas is an attractive option to reduce CO2 emissions and replace declining fossil natural gas reserves. Production of energy from biomass is approximately CO2 neutral. Production of Bio-SNG can even be CO2 negative, since in the final upgrading step, part of the biomass carbon is removed as CO2, which can be stored. The use of biomass for CO2 reduction will increase the biomass demand and therefore will increase the price of biomass. Consequently, a high overall efficiency is a prerequisite for any biomass conversion process. Various biomass gasification technologies are suitable to produce SNG. The present article contains an analysis of the Bio-SNG process efficiency that can be obtained using three different gasification technologies and associated gas cleaning and methanation equipment. These technologies are: 1) Entrained Flow, 2) Circulating Fluidized Bed and 3) Allothermal or Indirect gasification. The aim of this work is to identify the gasification route with the highest process efficiency from biomass to SNG and to quantify the differences in overall efficiency. Aspen Plus® was used as modeling tool. The heat and mass balances are based on experimental data from literature and our own experience.Overall efficiency to SNG is highest for Allothermal gasification. The net overall efficiencies on LHV basis, including electricity consumption and pre-treatment but excluding transport of biomass are 54% for Entrained Flow, 58% for CFB and 67% for Allothermal gasification. Because of the significantly higher efficiency to SNG for the route via Allothermal gasification, ECN is working on the further development of Allothermal gasification. ECN has built and tested a 30 kWth lab scale gasifier connected to a gas cleaning test rig and methanation unit and presently is building a 0.8 MWth pilot plant, called Milena, which will be connected to the existing pilot scale gas cleaning.  相似文献   

17.
Abstract

A compact version of a gasifier realised by integrating the fluidised bed steam gasification of biomass and the hot gas cleaning and conditioning system into one reactor vessel was the aim of the ‘UNIQUE’ project. Hot gas filtration systems are designed to protect the gas turbine or fuel cell from erosion and particle contamination, clean the process gases for production of synthetic fuels and indirectly improve efficiency and decrease maintenance. Knowledge of critical points of the porous ceramic filter elements is essential for the successful operation of the hot gas filtration. The corrosion behaviour of ceramic filter materials in contact with different biomass ashes under simulated gasification conditions was investigated for aluminium oxide, based SiC with mullite filter layer and mullite based filter candles. Analyses by energy dispersive X-ray spectroscopy show the influence of potassium on filter candle materials.  相似文献   

18.
生物质能发电技术分析   总被引:5,自引:0,他引:5  
在不可再生能源濒临枯竭,环境污染日益加剧的今天,生物质能源替代化石能源利用的研究和开发,已成为国内外学者研究和关注的热点。介绍了国内外生物质能的主要转化利用技术,分析了生物质直接燃烧发电技术和气化发电技术,提出了符合能量梯级利用原则的生物质能发电方式,将是生物质能利用的主要形式。  相似文献   

19.
Coal gasification technology is a significant process for the coal-based hydrogen production system and is considered as a key technology in the transition to “Hydrogen Economy”. To decrease the exergy destruction and enhance the cold gas efficiency of the coal gasification process, a novel three-step gasification technology thermally coupled with the chemical looping combustion process is proposed. And the hydrogen production system with CO2 recovery is integrated based on the three-step gasification technology. Results indicated that the cold gas efficiency of the three-step coal gasification technology is 86.9%, which is 10.1% points enhanced compared with GE gasification technology. Besides, the novel system has an energy efficiency of 62.3%, which is 3.1% higher than that of the reference system. Exergy analysis presented that the employment of the three-step gasification technology contributed to the reduction of system exergy destruction by 4.2%. Furthermore, the energy utilization diagram (EUD) suggested that matching between endothermic reactions and exothermic reactions plays important role in the enhancement of cold gas efficiency.  相似文献   

20.
The influence of hydrogen and tar on the reaction rate of woody biomass char in steam gasification was investigated by varying the concentrations in a rapid-heating thermobalance reactor. It was observed that the steam gasification of biomass char can be separated into two periods. Compared with the first period, in the second period (in which the relative mass of remaining char is smaller than 0.4) the gasification rate is increased. These effects are probably due to inherent potassium catalyst. Higher hydrogen partial pressure greatly inhibits the gasification of biomass char in the first and second periods. By calculating the first-order rate constants of char gasification in the first and second periods, we found that the hydrogen inhibition on biomass char gasification is caused by the reverse oxygen exchange reaction in the first period. In the second period, dissociative hydrogen adsorption on the char is the major inhibition reaction. The influence of levoglucosan, a major tar component derived from cellulose, was also examined. We found that not only hydrogen but also vapor-phase levoglucosan and its pyrolysates inhibited the steam gasification of woody biomass char. By mixing levoglucosan with woody biomass sample, the pyrolysis of char proceeds slightly more rapidly than with woody biomass alone, and gas evolution rates of H2 and CO2 are larger in steam gasification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号