首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic characteristics of stick-slip motion in reciprocating friction drive systems are investigated under dry contact using a 0.45% carbon steel pair. Based on this dynamic analysis, the stick-slip motion can be eliminated under certain experimental conditions depending upon driver speed, normal load and spring constant. The effects of normal load, driver speed, and spring constant on the positioning accuracy of the reciprocating friction drive system are examined under harmonic oscillation without stick-slip motion. Results show that at very low spring constants, the slip increases with increasing driver speed such that higher normal load has better positioning accuracy or smaller slip than does lower normal load. However, at high spring constants and high normal loads, there exhibits severe wear or peak at two limit positions on the sliding region. As a result, smaller normal loads have a better positioning accuracy than larger normal loads due to severe wear at high normal loads.  相似文献   

2.
Contact force of Multi-body dynamics (MBD) system can be classified two parts. First is a normal force and the other is a tangential force called friction force. And the friction force can be represented by two states such as stick and slip. The stick-slip phenomenon is simply described as a simple contact model which is a rigid body contacted on a sloped surface. If the calculated friction coefficient between the body and sloped surface is less than the static friction coefficient, the body should be stuck. If the calculated friction coefficient is greater than the static friction coefficient, the body will be sliding along the surface. The phenomenon is called as stick and slip state of friction, respectively. Usually many researchers and commercial MBD software used a coulomb friction force model which is defined with an only function of relative velocity. This kind of friction force model will be called a conventional friction force model in this paper. A big problem of the conventional model can not describe a stick state of friction phenomenon. In the case of conventional friction force model, the body will be sliding even though friction state is stick. Because, the relative velocity must have a non-zero value in order to generate the friction force. To solve this kind of problem, we propose a stick-slip friction force model including a spring like force. In the case of stick-slip friction force model, the body can be stuck on the sloped surface because the friction force will be a non-zero value, even though the relative velocity approaches zero. We defined a relative displacement variable called stiction deformation. In this paper, the stick-slip friction model is proposed and applied in the contact algorithm of MBD system. And then two friction models are compared with numerical examples. With the proposed stick-slip friction model, more realistic results are achieved.  相似文献   

3.
The dynamic friction and wear behaviors are investigated in reciprocating friction drive system using a 0.45% carbon steel pair. The effects of various operating parameters on the traction force, stick and slip time, and friction modes are examined under the lubricated contacts. Moreover, the critical operating conditions in classifying three friction modes are also established. Results show that the fluid friction induced by the shearing of lubricant dominates the variation of traction force and produces the positive slope γ at the first period of slip in the traction force–relative sliding velocity curve. The γ value decreases at higher driver speed during stick-slip motion due to the thicker fluid film and shear thinning effect. The γ value increases due to the asperity interactions as the friction region is transferred from stick-slip to sticking with normal load from 196 to 980 N. Furthermore, it is also found that the static friction force is independent of stick time for the tangential loading rate ranged from 1.12 to 16.8 s−1. The transition region produces the severest wear under the different driver speeds, but the wear is insensitive to the friction regions and the severe wear only occurs at higher normal load due to the action of Hertzian contact.  相似文献   

4.
A short survey of a modern view on the problem of friction from the physical viewpoint is presented. An atomically thin lubricant film confined between two substrates in moving contact has been studied with the help of molecular dynamics (MD) based on Langevin equations with coordinate- and velocity-dependent damping coefficient. Depending on model parameters, the system may exhibit either the liquid sliding regime, when the lubricant film melts during sliding (the “melting-freezing” mechanism of stick-slip motion), the “layer-over-layer” sliding regime, when the film keeps a layered structure at sliding, or the solid sliding regime, which may provide an extremely low friction (“superlubricity”). Atomic-scale MD simulations of friction, however, lead to a “viscosity” of the thin film, as well as to the critical velocity of the transition from stick-slip to smooth sliding, which differ by many orders of magnitude from the values observed in macroscopic experiments. This contradiction can be resolved with the help of the earthquakelike (EQ) model with a continuous distribution of static thresholds. The evolution of the EQ model is reduced to a master equation which can be solved analytically. This approach describes stick-slip and smooth sliding regimes of tribological systems within a framework which separates the calculation of the friction force from the atomic-scale studies of contact properties.  相似文献   

5.
In various fields of engineering, it is important to clarify friction-induced vibration, such as stick-slip motion, for a wide range of scales from microscopic elements to continental plates. In the present study, we apply a rate- and state-dependent friction model [30] (Hashiguchi and Ozaki, 2008), which can rationally describe the reciprocal transition between the static friction and the kinetic friction by a unified formulation, to the simulation of stick-slip instability for a one-degree-of-freedom spring-mass system under various conditions. It is verified that the various basic experimental findings on stick-slip motion can be pertinently described by the present approach. Moreover, the effect of the dynamic characteristics of the system, such as the mass, stiffness and driving velocity, is discussed, and parameters prescribing the rate of reciprocal transition of static-kinetic frictions and the preliminary microscopic sliding on the instability of the stick-slip motion are also discussed.  相似文献   

6.
Here, we present a mass-less quasi-static model of stick-slip phenomenon built exclusively on the difference between higher static and lower kinetic friction force. The model allows explaining the disappearance of stick-slip motion when elastic surface slid in contact with rigid counter-face bears large amount of small outgrowths. Adjusting the model parameters, it is also possible simulating systems with different transient responses. The results obtained may also be helpful in understanding the variety of sliding behavior of different materials.  相似文献   

7.
采用分子动力学方法研究了半球形刚性压头在单晶铜纹理表面上的纳观黏着滑动摩擦过程。对不同纹理密度下纹理形状和纹理深度对黏滑摩擦性能的影响进行了全面研究,通过对比分析不同纹理参数下的滑动摩擦力和基体变形,揭示了上述参数对纹理表面黏滑摩擦的影响规律。模拟结果表明:在相同的纹理密度下,柱状纹理表面的滑动摩擦力小于矩形纹理表面。相比矩形纹理,柱状纹理表面的结构稳定性较差,但纹理表面的结构稳定性随着纹理密度的增加而加强。在相同的纹理密度下,矩形纹理表面的滑动摩擦力随着纹理深度的增加而减小。  相似文献   

8.
This paper investigates the influence of the applied load and sliding velocity on the microfrictional properties of native oxide-covered Si(100) and Si(100) coated with octadecyltrichlorosilane (OTS) and perfluorodecyltrichlorosilane (FDTS) self-assembled monolayers (SAMs) using a precision microtribometer. Microfriction was investigated as a function of the applied load and sliding velocity. As has been confirmed in earlier studies, in the microtribological regime, OTS and FDTS significantly reduce the friction force in comparison to the bare native oxide-covered (hydrophilic) silicon surface. The friction versus applied load curve of the substrate material as well as the SAMs-covered surfaces can be described by a model based on contact mechanics. For the native oxide surface, microfriction is reduced with increasing sliding speed. The friction force of the OTS- and FDTS-covered surfaces increases with load and is proportional to the natural logarithm of sliding speed. The increase with sliding velocity gets larger for higher normal loads. It can be shown that this increase is proportional to the contact area of the counter sample with the SAMs.  相似文献   

9.
The effects of follower mass, time ratio, driver speed, and normal load on the slip displacement and stick-slip characteristics are experimentally and theoretically investigated in the reciprocating friction drive system under dry contact using a 0.45% carbon steel pair. Results show that the accumulative slip displacement is linearly proportional to the rotating cycle under various operating conditions. The slope for this linear relationship is defined as the slip rate. The slip rate increases with increasing driver speed, the mass of the follower, and |δ−1|, but decreasing normal load. There are three modes of relative motion between the driver ring and the follower in the present study, namely, unstable stick-slip (USS), stable stick-slip (SSS), and sticking (ST) regimes. They are significantly influenced by the driver speed, normal load, time ratio and mass of the follower. The critical operating conditions among unstable stick-slip, stable stick-slip, and sticking regimes were also established. The critical frequency can be theoretically calculated and agrees well with experimental results.  相似文献   

10.
Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.  相似文献   

11.
龚中良  黄平 《润滑与密封》2012,37(3):12-15,20
建立界面摩擦过程黏滑行为动力学模型,仿真分析摩擦系统内外因素对黏滑行为的影响规律.结果表明:界面摩擦过程中,黏滑行为不仅与材料本身如晶格常数、原子质量、原子间横向刚度系数有关,而且与系统外界参数如滑动速度及滑动部件的质量有关;材料的原子间横向刚度、晶格常数、原子质量、滑动机构质量愈小,黏滑行为愈显著,而相对滑动速度愈大,黏滑行为愈显著.  相似文献   

12.
The dynamic friction characteristics of a reciprocating friction drive system are investigated under conditions of dry contact using 0·45% carbon steel pair. Three friction modes are found during the operation, i.e. stick-slip, sticking and a transition region. The critical operating conditions in classifying these three modes are examined under various driver speeds, normal loads and spring constants. The critical values of driver speed and normal load increase with increasing spring constant. Generally, in the friction drive system the disappearance of the stick-slip results in smooth rolling. It is also found that the slope at the first period of slip on the traction force–relative slip velocity curve would have a transition from negative to positive value when the friction mode of stick-slip changes into sticking. Moreover, results show that the sticking mode gives the best positioning accuracy with the least wear on the contact surfaces. In addition, a transition from severe wear to mild wear is found when the friction mode is transferred from stick-slip to sticking only.  相似文献   

13.
Within the range of small and very small sliding velocities that are typical of applications such as clutch mechanisms, guideways of machine-tools, hydraulic or electric drives for robots, and continuous-indexing mechanisms, the phenomenon of ‘stick-slip’ occurs. By taking into consideration the dependence of kinetic friction force on sliding velocity during the slip period, three critical velocities of movement stability are revealed. One of the important ways for reducing the amplitude of the phenomenon is by designing lubricating grooves of optimum geometry brought about by oil viscosity and surface tension.  相似文献   

14.
We studied the shear response of a confined lubricant layer on approach of the transition to sliding with a surface force apparatus modified for oscillatory shear. In a given experiment, we found that the transition to sliding occurred always around the same deformation amplitude although the shear stress needed to initiate sliding varied up to a factor of two depending on sample history. This suggests the concept of deformation-controlled switching from rest to sliding. The elastic spring-constant, in the stick state, weakened with increasing deformation amplitude. This decrease can be described by a power law when plotted versus the distance to a critical deformation amplitude. The build-up of solid-like behavior after sliding stopped was also gradual and was consistent with a logarithmic time dependence. We suggest a model relating the gradual decrease of stiffness to weakening of the boundary layer, specifically to destruction of some elastic links between molecules or between molecules and the solid surfaces. Static friction (the force that must be overcome at the onset of kinetic motion) is proportional to the number of such links formed during the time of stick.  相似文献   

15.
The force of friction between plates of different materials (steel, brass, copper, titanium, glass, aluminum, rubber, and Teflon, among others) and a steel sample oscillating in the sliding plane at a frequency of 40–70 kHz has been studied. The measured friction coefficient as a function of sliding velocity and velocity oscillation amplitude fits well with theoretical predictions based on the simple Coulomb friction law at sliding velocities larger than the actuation velocity. However, the friction coefficient tends to a finite value at small sliding velocities, which is contrary to the theoretical prediction. The static limit has been studied in detail. A strong decrease in the static friction force takes place at oscillation amplitudes of 20–60 nm. Such amplitudes are enough to control the friction coefficient. The experimental data for both static and sliding friction are interpreted within the framework of a microscopic model and a phenomenological macroscopic model. The notion of intrinsic friction slip length is introduced.  相似文献   

16.
N. Gane  J. Skinner 《Wear》1973,25(3):381-384
Observations on static friction behaviour under stick-slip vibration conditions are presented. A static contact-time model of static friction does not adequately describe the observed variation in static friction; the governing variable is the rate of increase of the tangential force coefficient.  相似文献   

17.
Influence of Ultrasonic Oscillation on Static and Sliding Friction   总被引:2,自引:0,他引:2  
Vibrations of varying frequency and amplitude are used in many technological areas to control and reduce friction. In this study we report the results of systematic high-precision measurements of the static and sliding friction under the influence of ultrasonic oscillations. We investigate the effect of ultrasonic oscillations for in-plane and out-of-plane oscillations in the completely relevant interval of oscillation amplitudes and sliding velocities and for various material pairings. The experimental results are interpreted on the basis of both macroscopic and microscopic models. There are two main effects which are of interest for tribological applications. Firstly, the frictional force typically decreases with increasing oscillation amplitude, with an oscillation amplitude of about 0.1???m typically being sufficient for a significant decrease of frictional force. Secondly, the decrease of force is larger at smaller sliding velocities; therefore, at sufficiently large oscillation amplitudes, the frictional force always increases with sliding velocity. This effect can be used to suppress frictionally induced vibrations.  相似文献   

18.
The piezoelectric actuator, lead zirconate titanate (PZT) actuator, has been used for precision positioning from micrometer down to nanometer scale. In this paper, a soft-mounted PZT actuator is designed with a low-stiffness spring element to achieve a high-accuracy and large-displacement characteristic in precision positioning motion. The motion of the sliding table, the contact force between the hammer and the sliding table, and the stick-slip frictional force caused by the grinded groove are investigated. The governing equations of the distributed and lumped parameter systems are formulated to obtain the dynamic responses, which agree well with the experimental results.  相似文献   

19.
To optimise the gear change in automatic transmissions, more knowledge is needed of the engagement behaviour of wet clutches. A factorial design investigation of the engagement of a wet clutch has been carried out. The friction and temperature characteristics have been studied. The experiments were carried out in an apparatus that can vary sliding velocity, drive torque, inertia, force rate, and lubricant flow. The results show how these parameters affect the response data: engagement time, developed energy, temperature rise, maximum torque, maximum power, static friction, dynamic friction, and initial friction. There are interaction effects between some of the input parameters, but they are relatively small. The friction coefficient varies over time but is independent of the input parameters, except for dynamic friction, which decreases with increasing sliding velocity, drive torque, and inertia. The temperature rise was found to be proportional to developed energy and both these were most affected by sliding velocity. The drive torque and force rate have the greatest effect on the engagement time.  相似文献   

20.
The main purpose of the work has been to qualitatively and quantitatively analyse the influence of longitudinal tangential vibrations on friction and driving forces in a sliding motion. Computational models were developed and implemented in a combined Matlab-Simulink environment. Both the dynamic Dahl's and the Dupont's and classical Coulomb's friction models were used. The influence of vibration velocity amplitude on the friction force in the presence of tangential longitudinal vibrations and on reduction of the driving force in sliding motion was analysed. It revealed that the commonly accepted view that the reduction of the average friction force is a consequence of cyclic changes in the sign of the friction force vector, only when the amplitude of vibration velocity is greater than the sliding motion velocity, is erroneous. The phenomenon was also observed without any changes in the sign of friction force vector. The results of simulations were compared with experimental data obtained with the use of a test rig specifically designed for the work. The Dahl's friction model led to the best correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号