首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micropitting is a form of surface fatigue damage that happens at the surface roughness scale in lubricated contacts in commonly used machine elements, such as gears and bearings. It occurs where the specific film thickness (ratio of smooth surface film thickness to composite surface roughness) is sufficiently low for the contacts to operate in the mixed lubrication regime, where the load is in part carried by direct asperity contacts. Micropitting is currently seen as a greater issue for gear designers than is regular pitting fatigue failure as the latter can be avoided by control of steel cleanliness. This paper describes the results of both theoretical and experimental studies of the onset of micropitting in test disks operated in the mixed lubrication regime. A series of twin disk mixed-lubrication experiments were performed in order to examine the evolution of micropitting damage during repeated cyclic loading of surface roughness asperities as they pass through the contact. Representative measurements of the surfaces used in the experimental work were then evaluated using a numerical model which combines a transient line contact micro-elastohydrodynamic lubrication (micro-EHL) simulation with a calculation of elastic sub-surface stresses. This model generated time-history of stresses within a block of material as it passes through the contact, based on the instantaneous surface contact pressure and traction at each point in the computing mesh at each timestep. This stress time-history was then used within a shear-strain-based fatigue model to calculate the cumulative damage experienced by the surface due to the loading sequence experienced during the experiments. The proposed micro-EHL model results and the experimental study were shown to agree well in terms of predicting the number of loading cycles that are required for the initial micropitting to occur.  相似文献   

2.
This paper studies mechanisms of surface dents in enhancing the fatigue life of rolling bearings previously reported in Akamatsu et al. (1). First, transient micro-EHL analyses of heavily loaded contacts between rough surfaces with multiple dents are conducted under near rolling conditions. Contacts with various dent dimensions, dent arrangements under different loading and kinematic conditions are investigated. Results show that surface dents generate no favorable micro-EHL effects to enhance the contact fatigue life. Subsequent analyses, in conjunction with other published studies, suggest that the fatigue life enhancement likely comes from the reduced local traction at asperity contacts through the “oil pots” effects of the dents. The effects of the surface dents on contact fatigue life may depend on the lubrication regime in which the contact is operating being favorable in poor lubrication conditions but adverse in well-lubricated contacts. Since rolling bearings are usually designed to operate in a healthy regime of lubrication, fatigue life enhancement by artificially introducing dents on bearing surfaces may not extend to field applications.  相似文献   

3.
The friction behaviour of five different gear oils in rolling–sliding and pure sliding contacts and how temperature influences their friction properties were investigated. It is found that increasing temperature decreases boundary friction with gear oils that contain friction modifiers while not for other gear oils, at all contact pressures investigated. In mixed lubrication region, temperature decreases friction at low contact pressures while increases friction at high contact pressures. The effect of slide–roll ratio on friction is significant in boundary lubrication region especially at higher temperature while less significant in mixed lubrication region at both low and high temperatures. The ranking of gear oils for friction in boundary and mixed lubrication regimes is similar both in rolling–sliding and pure sliding contacts, regardless of temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and robust friction model is proposed for cold metal rolling in the mixed lubrication regime, based on physical phenomena across two length scales. At the primary roughness scale, the evolution of asperity contact area is associated with the asperity flattening process and hydrodynamic entrainment between the roll and strip surfaces. The friction coefficient on the asperity contacts is related to a theoretical oil film thickness and secondary-scale roll surface roughness. The boundary friction coefficient at the “true” asperity contacts is associated with tribo-chemical reactions between fresh metal, metal oxide, boundary additives, the tool and any transfer layer on the tool. The asperity friction model is verified by strip drawing simulations under thin film lubrication conditions with a polished tool, taking the fitting parameter of the boundary lubrication friction factor on the true contact areas equal to 0.1. Predicted values of average friction coefficient, using a boundary friction factor in the range 0.07–0.1, are in good agreement with measurements from laboratory and industrial rolling mill trials.  相似文献   

5.
White etching cracks (WEC) can lead to premature rolling contact fatigue. Possible drivers of WEC can be mixed friction, sliding between rolling elements and raceways, electrical current, critical additives, and water-contaminated lubricant. With respect to WEC failures induced by sliding between rolling elements and raceways under mixed friction, an approach is presented that can explain the experimentally observed failure characteristics of cylindrical roller thrust bearings. Variants of the bearing were tested using a WEC-critical lubricant. The tests showed that not only the contact pressure and sliding between rolling elements and raceways but also the lubrication conditions (specific film thickness) and the frequency of the contact load cycles have an influence on WEC life. These influences are reflected best by a newly introduced characteristic parameter termed friction energy accumulation. As far as WEC failures induced by sliding under mixed friction are concerned the friction energy accumulation could be used for a comparative assessment of the WEC risk of arbitrary rolling bearing applications. A link between the friction energy accumulation and the absorption of hydrogen is discussed and can provide further explanations for the susceptibility of bearing components to WEC formation.  相似文献   

6.
Various surface modification methods have been employed in order to improve the tribological performance of machine elements. In this work, electroless Ni–P alloy plating and sulfurizing treatments were employed, and the surface modified steel rollers and ball bearings were fatigue-tested under a pure or free rolling contact condition. The fatigue lives of both rollers and bearings were improved by these surface modifications. The contact pressure and subsurface stresses of the surface modified rollers and bearings were analyzed. The reason why the rolling fatigue strengths of surface modified rollers and bearings were higher than those of the non-coated ones would be due to the smaller contact pressure and subsurface stresses by the smaller elasticity as well as the conformity of the plated layer.  相似文献   

7.
Lubricated “soft” contacts, where one or both contacting solids have a low elastic modulus, are present in many practical engineering and biological applications including windscreen wipers, wet tyres, elastomeric seals, contact lenses and the tongue/palate system. In such contacts, the prevailing lubrication mode is “isoviscous EHL” (elastohydrodynamic lubrication). Unlike in steel–steel contacts, rolling friction can be considerable and this originates in part from the viscoelastic properties of the compliant surfaces.In this paper the influence on friction of both applied load and the elastic properties of the solids is studied using a mini traction machine. In this machine, the rolling and sliding friction can be separately determined. The viscoelastic properties of the polymers employed are measured using a dynamic mechanical analysis apparatus. The measured friction is compared to theoretical models for soft EHL and the viscoelastic energy losses arising from the contact deformation. Consideration of the frequency dependence of the substrate viscoelasticity enables reasonably accurate predictions of the rolling friction coefficient, especially within the mixed and boundary lubrication regimes.  相似文献   

8.
A model is developed to describe dynamic friction effects in lubricated surfaces. The model covers the hydrodynamic, mixed and boundary lubrication regions. The dynamic friction model can predict the friction force for time-varying velocity, and is useful in precise motion control. The model presented is for a short journal bearing, but can be extended to other geometries of sliding surfaces, such as point and line contacts or rolling element bearings. The friction is related to a time variable fluid film thickness, resulting from journal vibrations relative to the sleeve. The proposed model agrees qualitatively with experimental results for lubricated line contact. Both show similar hysteresis-type friction curves under oscillating velocity.  相似文献   

9.
Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. Rolling contact fatigue is one of the most dominant causes of failure of components operating in mixed lubrication regime. Contact fatigue begins with the initiation of microscopic fatigue cracks in the rolling contact surfaces or within the sub-surface regions due to cyclic shear stresses. Investigation of mixed lubrication effects on performance of machine components is of significant importance in order to understand and enhance their load carrying capacity. This article investigates the effects of mixed lubrication and surface roughness on machine components performance. Results from a mixed lubrication model are utilized to investigate the effects of different operating conditions on fatigue life of the components. Simple rough surfaces consisting of single hemispherical bump as well as complex rough surfaces consisting of a numerically generated 3D rough surface operating under mixed lubrication conditions are studied and results presented. The stress-based Ioannides and Harris model incorporating the fatigue limit is used to evaluate the fatigue life variation. Fast Fourier Transform (FFT) technique is used to significantly reduce the time required for the computation of internal stresses.  相似文献   

10.
In the present study, a series of dedicated experiments has been performed to observe and measure the build-up of ZDDP tribolayer in rolling/sliding heavily loaded mixed-lubricated contacts. The experiments were carried out using several test configurations. First, ball-on-disc tests were run to investigate the effects of the contact pressure, temperature, and roughness on tribolayer formation. Then, micropitting tests were carried out, with bearing components and with rolling bearings, in order to evaluate the influence of tribolayer build-up on the tribological performance of the rolling/sliding contacts. The obtained experimental data were used first to calibrate a specially developed thermomechanical model and secondly to validate it under different operating conditions and at different levels, up to assessment of the tribological performance, by measuring the level of micropitting on the surfaces. The results show that a relatively simple thermomechanical model can account for tribolayer formation and removal and their effects on the contact performance in a relatively consistent way.  相似文献   

11.
表面织构对水润滑轴承混合润滑性能的影响   总被引:3,自引:0,他引:3  
为分析表面织构对水润滑轴承混合润滑性能的影响,基于平均Reynolds方程及JFO空化边界条件建立带有表面织构的水润滑轴承混合润滑模型并数值求解,获得不同织构参数下水润滑轴承的Stribeck曲线。研究结果表明:表面织构是否能改善润滑性能与其深径比及面密度参数密切相关,织构的引入并不一定能降低水润滑轴承的摩擦因数;表面织构的面密度和深径比存在最优值,能使水润滑轴承获得最大的膜厚比与最小的摩擦因数,并在较低的转速下由混合润滑状态进入流体动压润滑状态。  相似文献   

12.
When studying the tribological behaviors of a Cu-based friction pair in different lubrication regimes, calculation of the real contact area of asperity contacts is crucial but difficult. In this work, a mixed lubrication model in plane contacts is developed, and pin-on-disc tests are carried out. The real contact area ratio, load sharing ratio, and friction coefficient are investigated. Effects of sliding velocity, temperature, and pressure are considered. The results show that when the maximum contact area ratio is about 14.6%, the load sharing ratio of asperity contacts is about 95%. The friction coefficient obviously increases from less than 0.04 to about 0.15 as the regime changes from hydrodynamic to boundary lubrication. Asperities have a significant influence on the local lubrication of a Cu-based friction pair, and the action of hydrodynamic pressure cannot be ignored.  相似文献   

13.
Until now the estimation of rolling bearing life has been based on engineering models that consider an equivalent stress, originated beneath the contact surface, that is applied to the stressed volume of the rolling contact. Through the years, fatigue surface–originated failures, resulting from reduced lubrication or contamination, have been incorporated into the estimation of the bearing life by applying a penalty to the overall equivalent stress of the rolling contact. Due to this simplification, the accounting of some specific failure modes originated directly at the surface of the rolling contact can be challenging. In the present article, this issue is addressed by developing a general approach for rolling contact life in which the surface-originated damage is explicitly formulated into the basic fatigue equations of the rolling contact. This is achieved by introducing a function to describe surface-originated failures and coupling it with the traditional subsurface-originated fatigue risk of the rolling contact. The article presents the fundamental theory of the new model and its general behavior. The ability of the present general method to provide an account for the surface–subsurface competing fatigue mechanisms taking place in rolling bearings is discussed with reference to endurance testing data.  相似文献   

14.
D. Zhu  H. S Cheng 《摩擦学汇刊》2013,56(3):364-370
General Elastohydrodynamic Lubrication Code (GEHLC) is a FORTRAN code for calculating the lubrication performance of line and point contacts used in machine elements such as gears, rolling bearings, cam and follower systems, and traction drives, etc. It adopts the most recent results published by Chittenden and Dowson et al. (1), to evaluate isothermal film thickness of point contacts, and uses the thermal reduction factor (2) to account for the inlet heating effects on the film thickness. By using Bair and Winer's analysis (3), a viscoelastic fluid model has been employed in this program to calculate shear stress in the film with bisection technique and In predict the coefficient of friction. Using this program one can also obtain flash temperature distribution on the two solid surfaces from a simplified heat conduction analysis based on work by Bolt (4), Jaeger (5), and Archard (6), et al. Typical results are presented for elliptical contacts used in rolling bearings.  相似文献   

15.
This paper presents a study on fatigue life in non-Newtonian thermal elastohydrodynamic lubrication (TEHL) point contacts with spinning. A numerical procedure is developed and extended to rolling contact fatigue (RCF) life. The results show that the effect of entraining velocity on the RCF life is closely related to ellipticity. The RCF life first decreases steeply and then gradually with increase in slide–roll ratio. However, the RCF life may increase slightly at a large slide–roll ratio. Spinning is beneficial for reduction of longitudinal friction coefficient; however, even for smooth surface contact, the RCF life can be slightly reduced by spinning.  相似文献   

16.
Soft coatings are used extensively in industry for contact friction reduction, particularly during the running-in period. A numerical model is developed for contact and lubrication analysis of some soft coating coated bearings in mixed fluid lubrication. The model is applied to determine oil film thickness, contact pressure, and the friction coefficient of the coated bearings in contact with a hard journal surface. The contact of tin-coated 339 Al-Si alloy bearings with case hardened steel is analyzed using the developed model.  相似文献   

17.
This paper presents a material combination that reduces the friction coefficient markedly to a superlow friction regime (below 0.01) under boundary lubrication. A state approaching superlubricity was obtained by sliding hardened steel pins on a hydrogen-free diamond-like carbon (DLC) film (ta-C) lubricated with a poly-alpha-olefin (PAO) oil containing 1 mass% of an ester additive. This ta-C/steel material combination showed a superlow friction coefficient of 0.006 at a sliding speed of 0.1 m/s. A hydrogencontaining DLC coating/steel combination also showed a lower friction coefficient in air than a steel/steel combination, 0.1 vs. 0.8, but no large reduction was observed when the sliding surfaces were lubricated with ordinary 5W-30 engine oil and the PAO oil containing an ester additive. The friction coefficient of the hydrogen containing DLC/steel combination lubricated with the PAO containing an ester additive was above 0.05. On the other hand, the superlow friction performance demonstrates that the rolling contact friction level of needle roller bearings can be obtained in sliding contact under a boundary lubrication condition. It is planned to apply this advanced DLC coating technology to valve lifters lubricated with a newly formulated engine oil in actual mass-produced gasoline engines. A larger friction reduction of more than 45% is expected to be obtained at an engine speed of 2000 rpm.  相似文献   

18.
This article reports a parametric analysis of rolling–sliding line contacts in boundary and near-boundary lubrication with relevance to the contacts in rotorcraft drive systems in loss of lubrication. A recently developed mathematical model for boundary lubrication with friction, temperature, and tribochemistry is used in the analysis. The parameters studied include radius of the line contact, surface hardness, boundary film shear strength, fluid–solid load sharing, system bulk temperature, load, speed, and slide-to-roll ratio. The contact condition is measured by the temperature and friction power intensity along with the boundary film integrity and mode of deformation. The results of the analysis led to a number of suggestions and elaborations listed in the Conclusion regarding various design considerations of the contacts in rotorcraft drive systems against loss of lubrication.  相似文献   

19.
张盛为 《润滑与密封》2023,48(12):23-31
针对边界膜对摩擦副润滑状态的影响,提出一种能够综合反映压力及剪切速率对边界膜失效综合影响的边界膜强度模型,并基于润滑状态测试结果通过拟合获得模型参数;将该边界膜强度模型与流体动压润滑模型、粗糙表面接触模型耦合,建立考虑边界膜强度的混合润滑模型,并通过轴瓦摩擦实验机润滑测试结果对模拟结果进行验证。和现有典型混合润滑模型相比较,该混合润滑模型可以更准确地反映摩擦副的实际润滑状态以及摩擦因数变化规律。运用考虑边界膜强度的混合润滑模型分析轴瓦零件润滑状态转化特性和机制。结果表明:在存在边界润滑的混合润滑条件下,当加载力小于临界载荷,边界膜几乎未发生破裂,摩擦因数随载荷增加缓慢变大,其数值均较小;当加载力加至临界载荷,边界膜破裂,摩擦副微凸体接触区域出现干摩擦,摩擦因数出现突然增加,表明该摩擦副由边界润滑为主的混合润滑状态过渡到以干摩擦为主的润滑状态。  相似文献   

20.
The behaviour of surface texturing based on shallow micro-dents was observed within mixed lubricated non-conformal contacts and compared with results obtained under thin film elastohydrodynamic conditions. Thin film colorimetric interferometry was used to observe the changes in lubrication film thickness. It was found that lubricant emitted by micro-dents could effectively lift off the real roughness features that provided an increase in average but also the local minimum film thicknesses. On the contrary to smooth contact conditions no film thickness reduction is obvious either downstream or upstream the micro-dent. The possible beneficial effect of surface texturing on mixed lubricated contact was checked through the qualitative wear test. It confirmed that an array of shallow micro-dents reduced asperity interactions of rubbing surfaces. Moreover, the effect of micro-dents on rolling contact fatigue was also considered in this study. It has been shown that individual dents would have to be much deeper compared to those used in surface texturing experiments to cause reduction in contact fatigue life. It can be suggested from the obtained results that properly designed surface texturing could help to increase the separation of rubbing surfaces under mixed lubrication conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号