首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unlubricated friction and wear properties of the superelastic material NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin-on-disk testing of the studied materials was performed at sliding speeds from 0.01 to 1 m/s at normal loads of 1, 5, or 10 N. For all of the studied friction pairs (NiTiHf pins vs. nitrided disks) over the given parameters, the steady-state coefficients of friction varied from 0.7 to 1.6, and those of the control (NiTiHf on NiTiHf) varied from 0.5 to 1.2. Pin wear factors ranged from approximately 10?6 against the NiTiHf and plasma-nitrided disks to approximately 10?4 for the gas-nitrided disks. The plasma-nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas-nitrided treatment generated the most pin wear but essentially no disk wear except under the most severe of the studied conditions (1 N load and 1 m/s sliding speed). The results of this study are expected to provide guidance for design of aerospace components such as gears and fasteners.  相似文献   

2.
The effects of transfer from solid lubricant sticks of unfilled, glass-filled, and bronze-filled PTFE on the room-temperature wear and friction of trailing primary contacts of aluminum (6061 T6) rods in repetitive intermittent contacts were investigated in a ring-on-rod configuration. The materials of the ring countersurfaces upon which the solid lubricants transferred and against which the trailing aluminum rods wore included steel, aluminum, copper, and an oxide dispersion-strengthened copper alloy. This sliding of the unlubricated copper ring countersurfaces against the aluminum led to the roughening of the copper as large (> 1 mm) aluminum particles embedded themselves upon the countersurface, with consequent transitions in the aluminum wear rate and the coefficient of friction to values exceeding 6 × 10? 3 mm3/Nm and 0.6, respectively, after an incubation period of several initial contacts of lower wear rate and friction. The other ring countersurface materials resulted in similarly high aluminum rod wear rate and coefficient of friction, more nearly from the onset of sliding. The application of unfilled PTFE solid lubricant transfer reduced the aluminum's gouging of the copper countersurfaces and correspondingly reduced the aluminum rod wear rate and the coefficient of friction against the copper, as well as against all other countersurface materials, towards 2 × 10?3 mm3/Nm and 0.3 or less, respectively. Glass- and bronze-filled PTFE transfer lubricants provided reductions in the wear rate of the aluminum rod comparable to or in some cases better than the unfilled PTFE, though the unfilled PTFE transfer lubricant in several cases provided better friction reduction.  相似文献   

3.
A qualitative model for the effect of water condensation on the frictional behavior of unlubricated and lubricated carbon-overcoated disks is presented. The model suggests that for unlubricated disks adsorbed water acts as a lubricant, protecting the unlubricated disk surface from direct solid/solid contact and direct exposure to the environment. For lubricated disks, the interaction between adsorbed water and lubricant molecules seems to be responsible for the effect of humidity on the frictional behavior of lubricated disks. The effect of temperature on the frictional behavior of the head/disk interface is discussed in terms of surface energy, lubricant viscosity and mobility.  相似文献   

4.
B.C. Pai  P.K. Rohatgi  S. Venkatesh 《Wear》1974,30(1):117-125
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.  相似文献   

5.
The coefficient of sliding friction for a number of materials was measured during the flight of Ranger 1 spacecraft. Flat disks of materials of interest were rotated at a speed of 8–14 inches per minute while in contact with 1/8-inch diameter hemispherical riders. Because of the low orbit achieved by Ranger 1, the experiment was exposed to vacuum in the range of 3 × 10?6 to 8 × 10?9 mm Hg. For unlubricated metals sliding on metals, the friction coefficient averaged about 0.5; for some combinations of metals, it occasionally exceeded 1.0. Lower values were observed with lubricants of grease or gold-plate and for ceramics sliding against metals. The coefficient of friction was very low, averaging 0.04, for metallic pairs lubricated with molybdenum disulfide and for polytetrafluoroethylene sliding against metals and ceramics. Relatively low friction coefficients were found for metallic materials sliding against unlubricated metallic and ceramic materials when at least one member of the pair was of high hardness. The coefficients observed for unlubricated metal pairs were not inconsistent with the hypothesis that high friction tends to correlate with high mutual solid solubility. In general the coefficients in space and in a laboratory vacuum of 5 × 10?6 mm Hg were not systematically different. For unlubricated metallic materials, friction in vacuum was higher than in air at shorter running times.  相似文献   

6.
In our earlier study, epoxy-based composites with graphene (10?wt-%) and in situ liquid fillers (base oil SN150 or perfluoropolyether at 10?wt-%) were found to provide low friction and highly wear durable as thin coatings on the steel substrate in dry interfacial state. In this present work, we have tested this composite in the presence of an external lubricant (base oil SN150). The lowest coefficient of friction was recorded as 0.04 and the lowest specific wear rate was measured as 9.8?×?10?7?mm3?Nm?1 for the composites without any failure of the coating up to 200,000 sliding cycles. It is shown that such polymeric coatings can be an excellent boundary film in both dry and lubricated conditions for various bearings.  相似文献   

7.
Laser-induced surface micro-pits pattern has been successfully used under fluid lubrication to reduce friction and wear through mechanisms of enhanced hydrodynamic lubrication and fluid retention. Limited successes of friction and wear reduction using solid lubricant and textured surfaces have been reported in the literature, and there still lacks an efficient way of finding textures that produce desired tribological performances. This study evaluates the effect of counterface micro-pits texture on wear of a notable alumina–PTFE nanocomposite and uses the Taguchi method and “Simplex Method” to find the micro-pits parameters producing the lowest wear of the composite material. The optimum texture found yields a composite wear rate of 1 × 10?7 mm3/Nm, a value identical to the material’s wear rate against untextured counterface. However, when slid against a freshly replaced composite pin, the existing transfer film on the optimum texture reduces composite’s wear volume at low wear transition by 90% and yields a steady-state wear rate of 3.9 × 10?7 mm3/Nm. On the contrary, preexisting low wear transfer film on untextured counterface increases wear of the newly replaced pin by 10× and yields a wear rate of 4.4 × 10?6 mm3/Nm. Results in this study suggest larger, shallower and sparser counterface pits are more favorable for debris entrapment, transfer film formation and wear reduction when slid against polymeric solid lubricants. It also raises new possibilities of self-adapting low wear counterface texture design that could potentially support low wear without requiring large amounts of run-in wear volume of bulk solid lubricants.  相似文献   

8.
The effect of implantation of nitrogen ions (1.5 MeV) on the friction and wear characteristics of pure iron sliding against M-50 steel (unimplanted) was studied in a pin-on-disk sliding friction apparatus. Test conditions included room temperature (~25°C), a dry air atmosphere, a load of ½ kg (4.9 N), sliding velocities of 0.043 to 0.078 m/s (~15 to 25 rpm), a pure hydrocarbon lubricant (n-hexadecane), or a USP mineral oil and nitrogen ion implantation doses of 5 × 1015 and 5 × 1017 ions/cm2.

No differences in wear rates were observed in the low-dose (5 × 1015 ions/cm2) experiments. In the high-dose experiments (5 × 1017 ions/cm2), small reductions in initial (~40 percent) and steady-state (~20 percent) wear rates were observed for nitrogen-implanted iron riders as compared with unimplanted controls. No differences in average friction coefficients were noted for either dose.

Auger electron spectroscopy combined with argon ion bombardment revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 6 atomic percent at a depth of 8 × 10?7 m (0.8 μm). Similar analysis within the wear scar (~2.0 × 10?5 m subsurface) of an implanted rider after 20 μm of wear yielded only background nitrogen concentration. No inward migration of nitrogen ions was observed.  相似文献   

9.
R.Y. Lee  Z. Eliezer 《Wear》1983,87(2):227-233
Friction experiments were conducted on a couple consisting of an Fe-Ni pin sliding against a tool steel disk. The Fe-Ni pin contained a small amount of silicon (0.18%). In a mild vacuum environment (0.1 mmHg at 10% relative humidity) at loads below a critical value (13.0 N, at a sliding speed of 0.22 m s?1), silicon segregation to the pin surface took place, resulting in the formation of a glassy film. Under these experimental conditions the friction coefficient and wear values were very low (0.28 and 5 × 10?3mm3km?1 respectively). At loads higher than the critical value (in the same mild vacuum environment) as well as under atmospheric conditions, no silicon segregation could be detected. The corresponding values of the friction coefficient and the wear rate were much higher (0.54 and about 0.4 mm3 km?1 respectively). It is suggested that the beneficial glassy layer can build up only when the rate of diffusion of silicon to the surface is higher than the rate of material removal (wear).  相似文献   

10.
The friction and wear properties of phosphor bronze and nanocrystalline nickel coatings were evaluated using a reciprocating ball-on-plates UMT-2MT sliding tester lubricated with ionic liquid and poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate, respectively. The morphologies of the worn surfaces for the phosphor bronze and nanocrystalline nickel coatings were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy. Results show that the phosphor bronze and nanocrystalline nickel coatings exhibited quite different tribological behaviors under different lubricants. Phosphor bronze plate shows higher friction coefficient (0.14) and wear rate (3.2 × 10−5 mm3/Nm) than nanocrystalline nickel coatings (average friction coefficient is 0.097, wear rate is 1.75 × 10−6 mm3/Nm) under poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate lubricated conditions. The excellent tribological performance of nanocrystalline nickel coatings under above lubricant can be attributed to the formation of MoS2 and MoO3 on the sliding surface. a quite a number of C, O and F products on worn surface of phosphor bronze than NC nickel coatings can improve anti-wear properties while using ionic liquid as lubricant.  相似文献   

11.
The current work aimed to determine the effect of p-toluene sulfonic acid (PTSA) in phenolic-based friction materials on mechanical and tribological properties. This study involved the use of phenolic resin as the binder, PTSA as the hardener, treated coconut coir whiskers as the reinforcing fiber, graphite particulates as dry lubricant, and granite fines as fillers. Synthesis was carried out by hot and cold setting techniques. In addition to hot set linings (HSLs) and cold set linings (CSLs), a lining without PTSA was fabricated for comparison. To analyze the mechanical response of the different compositions, tensile tests, compression tests, micro-Vicker's hardness tests, and density measurements were performed. Evaluation of the friction coefficients along with the wear rate was carried out using two-body sliding wear tests. The wear tests were carried out at loads of 5–15 N and speeds of 400–600 rpm. CSLs showed a coefficient of friction of 0.29 and average wear rate of 2.67 × 10?6 mm3/Nm and HSLs showed a coefficient of friction of 0.48 and average wear rate of 2.24 × 10?6 mm3/Nm. Optical microscopy and scanning electron microscopy (SEM) were used to study the microstructure of the friction linings and the wear morphology of the different linings was analyzed by SEM along with energy-dispersive spectroscopy (EDS) analysis.  相似文献   

12.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

13.

Pin-on-disk-type wear experiments for an Al-Si alloy impregnated graphite composite (pin) in contact with a bearing steel (disk) were conducted at 100N normal load (100 Newtons) in air, argon, and deionized water to investigate the effects of environment on the tribological characteristics of the composite. The friction and wear behavior and the pin-lifting phenomenon due to wear particle ingress into the contact surfaces were continuously measured during the experiments. At low relative humidity (RH) levels, the friction coefficients in air and argon are high (0.32 to 0.39) and decrease with increasing RH to values around 0.2. The friction coefficients in air have reached a minimum of 0.15 to 0.17 between 50 and 70% RH and increased slightly at 80% RH. The friction coefficients in argon are constant at about 0.2 between 10 and 80% RH. Because of the lubricating action of a water film, the friction coefficient in deionized water is slightly lower (0.1 to 0.17) than that in air. The mean wear rate of 10?4 to 8 × 10?4 mm 3 /mm (specific wear rate; w s = 10 ?6 to 8 × 10? 6 mm 2 /N) is very high in a severe wear regime at RH levels lower than 10% in air, decreases with increasing RH to a minimum in the middle RH range (30 to 60%), and increases slightly at RH levels higher than 70%. Although the mean contact pressure is very high (31.8 MPa), mild wear with the rates of 10?8 to 10?7 mm 3 /mm (w s = 10?10 to 10?9 mm 2 /N) occurs in the middle RH range. The same change in wear with RH as that in air is found in argon but the wear rate in argon is slightly lower than the wear rate in air. The height of the pin-lifting, having a wear reduction effect, is greater in argon than in air over almost the whole RH range. The wear rate in deionized water is nearly equal to the rate at 70% RH in air and argon.  相似文献   

14.
ABSTRACT

In this study, we investigated the friction and wear of rice bran (RB) ceramics—hard porous carbon materials made from rice bran—in a vacuum environment. Sliding friction tests for RB ceramic pin–RB ceramic disk contact were performed using a pin-on-disk-type friction tester installed in a vacuum chamber. The ambient pressure was controlled at 0.02, 0.6, 30, and 105 Pa (i.e., atmospheric pressure). The normal load was 0.49 or 2.94 N, the sliding velocity was 0.01 or 0.1 m/s, and the number of friction cycles was 50,000. The friction coefficient tended to decrease with decreasing ambient pressure for all combinations of normal load and sliding velocity; by contrast, the specific wear rate of the RB ceramic pin and disk specimens tended to increase with decreasing ambient pressure. The friction coefficient exhibited a low value of 0.05 or less at 0.02 Pa. The results suggested that the reduced surface roughness and graphitization of the sliding surface of the RB ceramic pin and disk due to induced friction, as well as the increased ratio between the partial pressure of water vapor and the ambient pressure, are related to the reduction in the friction of RB ceramic–RB ceramic dry sliding contact under vacuum conditions.  相似文献   

15.
Ni-based self-lubricating composites with multiple-lubricants addition were prepared by a powder metallurgy technique, and the effect of multiple-lubricants on tribological properties was investigated from room temperature to 700?°C. The synergetic effects of graphite, MoS2, and metallic silver lubricants on the tribological characteristics of composites were analyzed. XRD analysis showed that new Cr x S y and Mo2C phase were formed in the composites containing graphite, MoS2 and metallic Ag lubricants during the sintering process. The average friction coefficients (0.69?C0.22) and wear rates (11.90?C0.09?×?10?5?mm3?N?1?m?1) were obtained when rubbing against Inconel 718 alloy from room temperature to 700?°C due to synergetic lubricating action of multiple-lubricants. A smooth lubricating was gradually generated on the worn surface, and the improving of tribological properties was attributed to the formation of lubricious glaze film on the worn surface and their partially transferred to the counterface. The graphite played the main role of lubrication at room temperature, while molybdate phase and graphite were responsible for low friction coefficients and wear rates at mid/high temperatures. The synergetic lubricating effect of molybdate (produced in the rubbing process at high temperatures) iron oxide (transfer from disk material to the pin) and remaining graphite multiple-lubricants play an important lubricating role during friction tests at a wide temperature range.  相似文献   

16.
Zhang  X.H.  Gates  R.S.  Anders  Simone  Hsu  S.M. 《Tribology Letters》2001,11(1):15-21
A high speed ball-on-inclined-plane test method has been developed to evaluate the lubrication effectiveness of Z-Dol on magnetic hard disks. The test evaluates the combined durability of the lubricant film and the carbon overcoat under sliding conditions. A polished ruby (Al2O3) ball without suspension is used to simulate the head material. The ball slides over an inclined (at an angle of 0.055°±0.005°) section of the disk surface at 2.0 m/s linear velocity. The load is controlled by the geometric interference of the preloaded ball and the inclined plane. The contact forces are sampled periodically at 2 rpm and the frictional coefficients calculated. Repeated sliding between the ball and the disk sample leads to an increase in friction approaching that of the unlubricated case. Post test analysis using atomic force microscopy (AFM) suggests that the increase in friction is due to the loss of lubricant effectiveness of the lubricant and the wear of the carbon overcoat. X-ray photoemission microscopy (PEEM) results suggest progressive oxidation of Z-Dol as one of the degradation mechanisms leading to wear. The durability of the lubricating thin films is defined by the number of cycles to failure. Test repeatability is about 10%, depending on lubricant, film thickness, and surface roughness. The test can be used to evaluate different lubricant chemistries as well as different carbon overcoats. Compared to other pin-on-disk tests and step loading ball-on-disk methods, this test introduces two additional factors: high speed impact and wear acceleration by the inclined angle. The high speed impact simulates potential thermal stresses associated with head–disk contact. With an inclined angle, the load increases evenly for each contact cycle, hence simulates the ability of the lubricant layer to react to dynamic loads. The test is intended as a basic research tool to measure the fundamental resistance of the lubricant layer to resist repeated high speed contacts.  相似文献   

17.
Yoshiro Iwai  Kichiro Endo 《Wear》1982,75(1):159-172
To study the transition of the lubricated wear of 0.53% C steel in the steady state, wear tests were carried out by rubbing the annular surfaces of two cylindrical test pieces in machine oil with no additives. The ratio of mating areas was varied to approach actual contact conditions. Three regions of variation in the coefficient of friction with contact load were determined. Fatigue wear, characterized by a friction coefficient μ ≈ 0.05 and a specific wear rate ωs ≈ 0.005 × 10?6 mm3 N?1 m?1, occurs in the first region.A transition from fatigue wear to adhesive wear, with μ ≈ 0.05?0.12 and ωs ≈ (0.005?0.05) × 10?6 mm3 N?1 m?1, takes place gradually within a specific load range. Finally, adhesive wear predominates above the load level that marks the end of the transition. The same behaviour was analysed through stepwise loading tests. The onset of transition and seizure occurs at constant mean surface temperatures. However, the end of transition is also affected by factors other than temperature. The results are compared with the transitions reported by the International Research Group on Wear of Engineering Materials of the Organization for Economic Cooperation and Development.  相似文献   

18.
Nagaraj Chelliah  Satish V. Kailas 《Wear》2009,266(7-8):704-712
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms?1, normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s?1 in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms?1. This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 × 10?4 Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.  相似文献   

19.
An adhesive wear model based on variations in strength values   总被引:1,自引:0,他引:1  
Ernest Rabinowicz 《Wear》1980,63(1):175-181
It is postulated that adhesive wear particles are formed when the interface at a junction between two sliding metals is strong while some path within one of the metals but near the interface is weak. Plausible assumptions about the strength values and their statistical variation are made, and it is shown that in good agreement with experimental findings wear coefficient values are obtained varying from 5.7 × 10?3 for clean identical metals to 4 × 10?7 for metals lubricated so as to produce a friction coefficient of 0.10. The model makes no explicit assumptions about the causes of adhesive wear but emphasizes the importance of adhesion at the interface and fluctuations in strength in the contacting materials.  相似文献   

20.
Polyetherimide (PEI) is one of the latest generic high-performance engineering thermoplastics. PEI (developed by General Electric (USA) under the trade name ULTEM) is an amber and amorphous polymer with a heat distortion temperature between those of polyarylate resin and thermally stable crystalline polymers such as polyether-ether ketone (PEEK) and polyamideimide (PAI). It has excellent thermal, mechanical and electrical properties along with easy processability. In the work reported here, a wear-resistant formulated composite supplied by GEC (ULTEM 4001) was selected for tribological investigations on a pin on disc machine under unlubricated conditions, against mild steel. Analysis of the composite revealed that this grade contained PTFE (13–15%), which is the most promising polymeric lubricant. A very low and stable frictional coefficient was observed against moderately finished surfaces. However, its specific wear resistance (⋍10−14 m3/Nm) was comparatively lower than that of fibre-reinforced thermoplastics. The wear mechanism was found to be significantly dominated by the presence of PTFE. The friction coefficient was in the range of 0.2 and reduced to a still lower value (0.1) as the apparent contactpressure increased. Scanning electron microscopy was used to investigate the underlying wear mechanism. Film transfer of PTFE was observed to be the principal factor responsible for reduced friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号