首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This study is made of an enhancement of a mixed-convection heat transfer in a channel containing multiple porous blocks heated from below. The heat flux from the most upstream heater varies in a sinusoidal form, while other heaters have a constant heat flux. The Brinkman-Forchheimer-extended Darcy model and two-equation energy model are adopted to characterize the flow and temperature fields inside porous regions. The explicit effect of thermal modulation at the upstream heater is examined by acquiring comprehensive numerical solutions. The heat transfer enhancement is pronounced at the far downstream heaters when resonance is realized. The resonance frequency is close to the characteristic frequency of the system, which scales with the time for the main stream to travel from a heater to a neighboring heater. The evolutions of flow and temperature fields are exemplified to provide physical interpretations. The effects of pore density and of porous block height are reported. The benefit of heat transfer augmentation, as opposed to the increased friction factor, is assessed to justify the use of thermal modulation in the upstream heater.  相似文献   

2.
Improvement of the thermal performance of a solar air heater can be obtained by enhancing the rate of heat transfer. The thermal efficiency of double pass solar air heater is higher in comparison to single pass with the concept involved of doubling the heat transfer area without increase in the system cost. Numbers of studies have been carried out on the performance analysis of double pass solar air heater provided with heat transfer augmentation techniques viz. using extended surfaces, packed bed, corrugated absorber were reported in the literature and found more increase in the thermal efficiency in comparison to conventional double duct solar air heater. These studies includes the design of double pass solar air heater, heat transfer enhancement, flow phenomenon and pressure drop in duct. This paper presents an extensive study of the research carried out on double pass solar air heater. Based on the literature review, it is concluded that most of the studies carried out on double pass solar air heater integrated with porous media and extended surfaces. Few studies were carried out with corrugated absorber. Further no study has been reported so far on double pass solar air heater with absorber plate artificially roughened from both the sides. Mathematical models based on energy analysis of some configurations of solar air heater have been discussed.  相似文献   

3.
INTRODUCTIONHeattransferenllancen1enttechniquesplayaveryimportantroleintllermalcontroltechnologies1lsedwithnlicroelectronicchips,powerfullasermirrors,aerospacecraft,thermalnuclearfusion,etc.Itiswidelyrecognizedthattl1eheattransfercanbein-creasedbyil1creasingthesurfaceareaincontactwiththecoolant.TuckermanandPease[1,2]pointedoutthatforlaminarflowinconfinedchannels,theheattransfercoefficientisinverselyproportionaltothewidthofthechannelsincethelimitingNusseltnum-berisconsta11t.Theybuiltawate…  相似文献   

4.
Finite-volume numerical solutions are obtained for buoyant convection of a fluid with temperature-dependent viscosity in an enclosed space. At one vertical wall the temperature is constant, and at the other vertical wall the temperature is time-periodic. Solutions to the governing Navier-Stokes equations are acquired for a fixed Rayleigh number and over wide ranges of viscosity contrast, which measures the ratio of viscosities at the cold side wall and hot side wall. The effects of variable viscosity on the time-mean value as well as the amplitude of fluctuation of instantaneous heat transfer rate are delineated. The extensive results reveal the existence of resonance and show that resonance becomes more distinctive for large viscosity contrast in the case of the hot-wall temperature oscillation. As the viscosity contrast increases, the upward convective motion is invigorated during the relative heating phase due to the lowered viscosity in the thermal boundary layer near the hot vertical side wall. This is also reflected in the augmentation of the cycle-averaged heat transfer rate. When the temperature oscillation is imposed on the cold wall, the flow is less sensitive to the viscosity variation. Physical interpretations of the overall flow and heat transfer are offered.  相似文献   

5.
Fins serve as heat transfer augmentation features in solar air heaters however they increase pressure drop in flow channels. Pin fins are relatively good heat transfer augmentation features with superior aerodynamic performance and as a result find application in some solar air heaters. The exergy optimization method is employed in sizing the pin fin. Results indicate that high efficiency of the optimized fin improves the heat absorption and dissipation potential of a solar air heater. With optimum fin efficiency and superior absorptive coating quality, useful energy losses can be minimized. Some important observations pertinent in design are made.  相似文献   

6.
This study is motivated by the need to devise means to enhance heat transfer in configurations, like the back step, that appear in certain types of MEMS that involve fluid flow and that are not very efficient from the thermal transfer point of view. In particular, the work described in this paper studies the effect that a prescribed flow pulsation (defined by two control parameters: velocity pulsation frequency and pressure gradient amplitude at the inlet section) has on the heat transfer rate behind a backward facing step in the unsteady laminar 2-D regime. The working fluid that we have considered is water with temperature dependent viscosity and thermal conductivity. We have found that, for inlet pressure gradients that avoid flow reversal at both the upstream and downstream boundary conditions, the time-averaged Nusselt number behind the step depends on the two above mentioned control parameters and is always larger than in the steady-state case. At Reynolds 100 and pulsating at the resonance frequency, the maximum time-averaged Nusselt number in the horizontal wall region located behind the step whose length is four times the step height is 55% larger than in the steady-case. Away from the resonant pulsation frequency, the time-averaged Nusselt number smoothly decreases and approaches its steady-state value.  相似文献   

7.
Heat transfer augmentation features for the improvement of heat transfer from the absorber-plate of a solar air heater to the working fluid are mostly fins however these features also increase pressure drop in the flow channel. The exergy optimization philosophy is adopted in the fin sizing for this air heating application; this optimization philosophy ensures that the maximum quantity of heat is transferred by the fins while generating the least entropy in the system thus conserving exergy. Results indicate that the higher the fin efficiency, the higher the heat conversion and delivery potential. Given an optimum fin length (efficiency) and superior coating absorptive vigour, useful energy losses in the heater can be minimized. Some important observations relevant in design are made.  相似文献   

8.
S. Jaisankar  K.N. Sheeba 《Solar Energy》2009,83(11):1943-1952
Experimental investigation of heat transfer, friction factor and thermal performance of twisted tape solar water heater with various twist ratios has been conducted and the results are compared with plain tube collector for the same operating conditions with Reynolds number varied from 3000 to 23,000. Experimental data from plain tube collector is validated with the fundamental equations and found that the discrepancy is less than ±5.35% and ±8.80% for Nusselt number and friction factor, respectively. Correlations have been developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) and are compared with the experimental values. Results conclude that, heat transfer and pressure drop are higher in twisted tape collector compared to the plain one. Among the various twist ratios, the minimum twist ratio 3 is found to enhance the heat transfer and pressure drop due to swirl generation. As the twist ratio increases, the swirl generation decreases and minimizes the heat transfer and friction factor.  相似文献   

9.
A numerical simulation has been carried out to investigate the heat transfer enhancement in a shell-and-tube heat exchanger using a porous medium inside its shell and tubes, separately. A three-dimensional geometry with k-? turbulent model is used to predict the heat transfer and pressure drop characteristics of the flow. The effects of porosity and dimensions of these media on the heat exchanger's thermal performance and pressure drop are analyzed. Inside the shell, the entire tube bundle is wrapped by the porous medium, whereas inside the tubes the porous media are located in two different ways: (1) at the center of the tubes, and (2) attached to the inner wall of the tubes. The results showed that this method can improve the heat transfer at the expense of higher pressure drop. Evaluating the method showed that using porous media inside the shell, with particular dimension and porosity can increase the heat transfer rate better than pressure drop. Using this method inside the tubes leads to two diverse results: In the first configuration, pressure loss prevails over the heat transfer augmentation and it causes energy loss, whereas in the second configuration a great performance enhancement is observed.  相似文献   

10.
Mehmet Arik 《传热工程》2013,34(9):763-773
It has been shown that synthetic jets can enhance heat transfer in air-cooling during natural convection heat transfer. Those meso scale devices are expected to be one of the methods of choice for cooling confined space, low heat-generating electronics. The present study focuses on the local and global heat transfer coefficients of a high-frequency meso scale synthetic jet. The experiments have been completed with synthetic jets, which are 12.5 mm in diameter and 2 mm thick with a square orifice of 1 mm. A synthetic jet has been driven at the resonance frequency of 4500 Hz, and voltage was between 30 V and 50 V. Earlier studies have focused on understanding the effect of voltage and driving frequency on the average heat transfer effect, while the current study aims for determining local heat transfer. A microscopic infrared thermal imaging technique was used to acquire local temperature distributions, and the data were analyzed for local convective and radiative heat transfer coefficients. Four square heaters (each with a different size) have been studied in the current study to determine the effect of the characteristic length as well. Heat transfer enhancements over the specific heater sizes are presented, and it is found to be between 4 and 10 times of natural convection.  相似文献   

11.
High efficiency solar air heater   总被引:1,自引:0,他引:1  
This article presents an analysis for a novel type of solar air heater. The main idea is to minimize heat losses from the front cover of the collector and to maximize heat extraction from the absorber. This can be done by forcing air to flow over the front glass cover (preheat the air) before passing through the absorber. Hence, this design needs an extra cover to form a counter-flow heat exchanger. Porous media forms an extensive area for heat transfer, where the volumetric heat transfer coefficient is very high. Hence, using a porous absorber will enhance heat transfer from the absorber to the airstream. In the design of this type of collector, which combines double air passage and porous media, care should be taken to minimize pressure drop. However, the thermal efficiency of this type of collector is significantly higher than the thermal efficiency of conventional air heaters. The thermal efficiency of the suggested collector exceeds 75% under normal operating conditions. The pressure drop is not so significant if high porous medium is used and careful design of U-return section is considered.  相似文献   

12.
Using CFD software FLUENT, we investigated the effect of the angle of inclination of a plate heat shield on the thermal and hydraulic performance of a plate-fin heat sink. The variation of this angle causes a substantial and complicated variation of the flow field in space both upstream and downstream near such a heat sink. This distinctive behavior modifies the pressure drop between the inlet and outlet of the investigated duct, but that variation influences only slightly the flow field in the space from fin to fin, and thus the thermal resistance of the heat sink. This trend is further smoothed with increasing Reynolds number and height of the heat sink. As a compromise between the demands of small thermal resistance and a small pressure drop, the angle of inclination of a plate heat shield must be chosen carefully.  相似文献   

13.
Transient heat or mass transfer to a spherical drop of a dielectric fluid suspended in another dielectric fluid in the presence of steady and time periodic electric fields (both uniform and non-uniform) is investigated in this paper. The internal problem or the heat (mass) transfer limit that corresponds to the bulk of the resistance being in the dispersed phase is addressed. Using a finite volume formulation, the energy conservation equation is solved to obtain the transient temperature distribution and the overall Nusselt number for the drop Peclet numbers from 0 to 10,000 and the dimensionless frequency (ω1) from 0 to 50,000 using a fully implicit method. Application of steady and time-periodic fields leads to fluid circulation in the drop which provides an increase in the heat (mass) transfer rate. At first glance one might expect that the time-periodic field, which gives rise to a continuously varying flow field, might provide better mixing and improved heat (mass) transfer enhancement compared to time invariant one which gives rise to a steady flow field. However results show that for low to moderate Peclet numbers, the steady electric field is more effective in heat transfer enhancement compared to non-uniform time periodic field which in turn is more effective than the uniform time-periodic field. This counterintuitive heat (mass) transfer behavior is explained in detail in the paper. On the other hand, at high Peclet numbers, the non-uniform time periodic field provides significant improvement in heat (mass) transfer relative to steady uniform electric field. We show that at high Peclet numbers the maximum heat (mass) transfer enhancement is obtained when the dimensionless electric field frequency is of the order of Peclet number or ω1  O(Pe). By tracking Lagrangian fluid particles, it is revealed that application of non-uniform unsteady electric field results in chaotic advection at high Pe whereas steady and unsteady uniform electric fields do not.  相似文献   

14.
This work addresses the effect of temperature on the thermophysical properties (i.e., density, viscosity, thermal conductivity, and specific heat capacity) of alumina–water nanofluid over a wide temperature range (25°C–75°C). Low concentrations (0–0.5% v/v) of alumina nanoparticles (40 nm size) in distilled water were used in this study. The pressure drop and the effective heat transfer coefficient of nanofluids were also estimated for different power inputs and at different flow rates corresponding to Reynolds numbers in the range of 1500–6000. The trends in variation of thermophysical properties of nanofluids with temperature were similar to that of water, owing to their low concentrations. However, the density, viscosity, and thermal conductivity of nanofluids increased, while the specific heat capacity decreased with increasing the nanoparticle concentration. The convective heat transfer coefficient of the nanofluid and the pressure drop along the test section increased with increasing the particle concentration and flow rate of nanofluid. Results showed that the heat transfer coefficient increases, while the pressure drop decreases slightly with increasing the power input. This is because of the fact that increasing power input to heater increases the bulk mean temperature of nanofluids, resulting in a decreased viscosity. The prepared nanofluids were found to be more effective under turbulent flow than in transition flow.  相似文献   

15.
An experimental study is conducted to investigate the heat transfer augmentation in developing turbulent flowthrough a ribbed square duct.The duct is made of 16mm thick bakelite sheet.The bottom surface of the ribbedwall having rib pitch to height ratio of 10 is heated by passing a c current to the heater placed under it.Theuniform heating is controlled using a digital temperature controller and a variac.The results of ribbed duct arecompared with the results of a smooth duct under the same experimental conditions.It is observed that the heattransfer augmentation in ribbed duct is better than that of the smooth duct.At Re=5.0×10~4,the meantemperature of air flowing through the ribbed duct increases by 2.45 percent over the smooth duct,whereas in theribbed duct Nusselt number increases by 15.14 percent than that of the smooth duct with a 6 percent increase inpressure drop.  相似文献   

16.
A numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a three-dimensional isothermal wall channel of aspect ratio, AR = 2 with 45° staggered V-baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 1200. To generate two pair of main streamwise vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and staggered arrangement on the lower and upper walls of the channel. Effects of different baffle heights on heat transfer and pressure drop in the channel are studied and the results of the V-baffle pointing upstream are also compared with those of the V-baffle pointing downstream. It is apparent that in each of the main vortex flows, a pair of streamwise twisted vortex (P-vortex) flows can induce impinging flows on a sidewall and a wall of the interbaffle cavity leading to drastic increase in heat transfer rate over the channel. In addition, the rise in the V-baffle height results in the increase in the Nusselt number and friction factor values. The computational results reveal that the optimum thermal enhancement factor is around 2.6 at baffle height of 0.15 times of the channel height for the V-baffle pointing upstream while is about 2.75 at baffle height of 0.2 times for the V-baffle pointing downstream.  相似文献   

17.
With high-speed development, the natural gas industry will lead and promote the development of related techniques and equipments. This article studies the application of the heater in the gas industry, and indicates that it is an indispensable piece of equipment in natural gas application systems. As a special furnace type, the natural gas heater is the main energy consumer for the process of gas production, transportation, and application. Thus, the development of highly efficient natural gas heaters has become an important research aspect. Investigations and improvements on the structure and heat-transfer process of the heater in order to improve its thermal efficiency are discussed in this article. It is concluded that as a weak point, the heat transfer effect inside the natural gas heater needs to be improved. A simple and effective improved structure of a diversion-type natural gas heater is put forward, so as to help the heat transfer medium form an organized flow and enhance the heat transfer, thus improving the thermal efficiency of the natural gas heater and saving energy considerably. This technology has been awarded a patent in China.  相似文献   

18.
Numerical and experimental results for laminar flow and forced convection in a grooved channel indicate that significant heat transfer enhancement is possible by appropriately-tuned modulation of a steady, separated flow. The frequency r response of the enhancement is strongly peaked around the frequency of the least stable (decaying) mode of the unmodulated flow, suggesting that a simple resonance phenomenon is responsible for the transport augmentation.  相似文献   

19.
In this study, a genetic algorithm is employed to minimize the entropy generation rate in microchannel heat sinks. The entropy generation rate allows the combined effects of thermal performance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. Previously developed models for the heat transfer, pressure drop and entropy generation rate are used in the optimization procedure. The results of optimization are compared with existing results obtained by the Newton–Raphson method. It is observed that the GA gives better overall performance of the microchannel heat sinks.  相似文献   

20.
Experimental investigation of heat transfer, friction factor and thermal performance of thermosyphon solar water heater system fitted with helical and Left–Right twist of twist ratio 3 has been performed and presented. The helical twisted tape induces swirl flow inside the riser tubes unidirectional over the length. But, in Left–Right system the swirl flow is bidirectional which increases the heat transfer and pressure drop when compared to the helical system. The experimental heat transfer and friction factors characteristics are validated with theoretical equations and the deviation falls with in the acceptable limits. The results show that heat transfer enhancement in twisted tape collector is higher than the plain tube collector. Compared to helical and Left–Right twisted tape system of same twist ratio 3, maximum thermal performance is obtained for Left–Right twisted tape collector with increase in solar intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号