首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influences of newborn calf serum on the fretting behaviors of Ti–6Al–4V and diamond-like carbon coating were investigated using a fretting-wear test rig with a cylinder-on-flat contact. The results indicated that, for the Ti–6Al–4V/Ti–6Al–4V contact, the friction coefficients were high (0.8–1.2) and the wear volumes presented an increase with the increase in the displacement amplitude under dry laboratory air conditions. Under serum-liquid conditions, the Ti–6Al–4V/Ti–6Al–4V contact presented significantly larger wear volumes under the displacement of ±?40 µm; however, it presented significantly lower friction coefficients (0.25–0.35) and significantly smaller wear volumes under the displacement of ±?70 µm. For the DLC coating/Ti–6Al–4V contact, the coating response wear maps could be divided into two areas: the coating working area (low normal force conditions) and the coating failure area (high normal force conditions). In the coating working area, the DLC coating could protect the substrate with low friction, low wear volume, and mild damage in the coating. The presence of serum had a positive influence on the tribological performance of the DLC coating. Furthermore, the positive influence was more significant under larger displacement amplitudes condition.  相似文献   

2.
C. K. Lee 《摩擦学汇刊》2013,56(5):640-651
Nanocomposite coatings can endow a plated surface with various properties such as wear resistance, high-temperature corrosion protection, oxidation resistance, and self-lubrication. This work studies the corrosion and corrosive wear resistance of electroplated nickel nanocomposite coatings on Ti-6Al-4V alloy in a Hank's solution, adding various concentrations of an Al2O3 powder in plating solution, with particle diameters of 20–30 nm and 1 μm for comparisons. The experimental results showed that the content of Al2O3 incorporated into the electroplated nickel composite coating increased with the concentration of Al2O3 powder in the electroplating solution, and increasing the surface hardness, corrosion, and corrosive wear resistance of electroplated nickel micro- and nanocomposite coatings caused smearing of the nodule boundary and elimination of voids in the deposits. The Al2O3 nanoparticulates were embedded and distributed more uniformly than the Al2O3 microparticulates in the nickel matrix after a heat treatment of 400°C, producing a more continuous and dense coated composite layer on the Ti-6Al-4V substrate. This phenomenon is responsible for the Ni/Al2O3 composite coating with superior surface hardness, providing high corrosion resistance and corrosive wear protection to the Ti-6Al-4V alloy substrate in Hank's solution.  相似文献   

3.
Improving the adhesion and wear endurance lifetimes of the solid lubricant molybdenum disulfide (MoS2) on titanium (Ti) alloys was studied in this experimental investigation. Ti-6Al-4V alloy specimens were implanted with gas ions or coated with ceramic layers prior to coating with sputtered MoS2 to investigate the adhesion and wear lifetimes of the MoS2 coatings. The greatest improvement in scratch adhesion (2.4 times Ti-6Al-4V coated directly with MoS2) was observed for an MoS2/diamond-like carbon/Si multilayer coating. Sliding wear tests revealed the greatest lifetime improvement (3.2 ×) was for an MoS2/TiC dual-layer coating. Increased MoS2 adhesion was observed for pretreated surfaces with a Vickers microhardness greater than 800 kgf/mm2. Increased adhesion of MoS2 for bond layers with lower elastic moduli (estimated) is suggested. Therefore the ratio hardness/elastic modulus may be a potential figure of merit for surface pretreatment selection.  相似文献   

4.
ABSTRACT

The study of laser cladding of 90Ti-10Al2O3, 90Ti-8Al2O3-2Zn and 90Ti-4Al2O3-6Zn coatings onto Ti-6Al-4V alloy, with intention to produce defect-less, high microhardness and wear resistant coating was carried out. The coatings were deposited onto Ti-6Al-4V alloy at 900 W laser power and 0.6 m/min laser scan speed. Microstructures and phase constituents of the developed coatings were investigated by using a scanning electron microscope (SEM) and X-ray diffractometer correspondingly. Vickers microhardness tester and pin-on-disk tribometer were employed to characterize microhardness and wear behaviour of the Ti-Al2O3/Zn coatings respectively. SEM was also used to examine the worn track. It was observed that 90Ti-10Al2O3 coating yielded optimal microhardness along with maximal wear resistance in comparison to the other coatings and Ti-6Al-4V alloy. It has been established that laser cladding of Ti-Al2O3 coating with Zn contents on Ti-6Al-4V alloy alleviates the formation of cracks, however, microhardness and wear properties are negatively affected.  相似文献   

5.
Ti-6Al-4V alloy rubbing against aluminum-bronze 630 was evaluated in this work. High velocity oxygen fuel (HVOF) WC-10%Co-4%Cr thermal sprayed and TiN, CrN and DLC physical vapor deposition (PVD) coatings were applied to increase titanium substrate wear resistance. Pin-on-disk tests were performed with a normal force of 5 N and at a speed of 0.5 m/s, with a quantitative comparison between the five conditions studied. Results showed higher wear resistance for Ti-6Al-4V alloy DLC coated and aluminum-bronze 630 tribological pair and that the presence of graphite carbon structure acting as solid lubricant was the main wear preventing mechanism.  相似文献   

6.
This work focuses on the tribological behaviour of PVD coated Ti-6Al-4V. Commercially available single layer CrN, CrN/NbN superlattice and multilayer WC/C coatings were taken into consideration. The dry sliding behaviour of the coated systems was studied by a flat-on-cylinder tribometer (load range 30–60 N). A critical load, corresponding to the end of coating life, was identified for each coated system. The highest critical loads were observed for CrN- and WC/C-coated Ti-6Al-4V. However, only WC/C also led to a significant decrease of the coefficient of friction. The good performance of WC/C-coated Ti-6Al-4V was ascribed to both the high H/E ratio of the coating and to the best match of elastic modulus with the substrate.  相似文献   

7.
TiB2 coatings have been studied as prospective protective layers to inhibit the interfacial reaction between SiC fibres and Ti-alloy matrices. This protective coating has been deposited onto SiC monofilament fibres using a chemical vapour deposition (CVD) technique. The fibre-matrix compatibility of these TiB2-coated SiC fibres in Ti-6Al-4V composites was evaluated by incorporating the coated fibres into Ti-6Al-4V using a diffusion bonding technique. The interfaces of this composite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis, to evaluate the interfacial microstructures, chemical stability and the efficiency of TiB2 as a protective coating for SiC fibres in Ti-alloy matrices, and to study the effects of deposition temperature on the interface of the coated fibre. Results show that stoichiometric TiB2 coatings are stable chemically to both SiC fibres and Ti-6Al-4V and hinder the deleterious fibre-matrix reactions effectively. Boron-rich TiB2 coatings should be avoided, as they lead to the formation of a needle-like TiB phase at the fibre–matrix interface. These findings provide promising evidence for the value of further exploration of the use of stoichiometric TiB2 as a protective coating for SiC fibre in Ti-based composites.  相似文献   

8.
A study has been made of the sliding wear behaviour of untreated and ion implanted ultra high molecular weight polyethylene (UHMWPE) against a surface modified titanium alloy (Ti-6Al-4V) using a pin on disc apparatus. It was found that the presence of water lubrication and a very smooth counterface was necessary to maintain low wear rates of the UHMWPE. A ‘zero wear’ effect was observed when nitrogen implanted UHMWPE was tested against very smooth counterfaces (Ra ≈ 0.03 μm) of either surface oxidized or nitrogen implanted Ti-6Al-4V under water lubrication. The enhanced mechanical and physical properties of the surface treated materials are believed to be responsible for the improved wear performance.  相似文献   

9.
In this study, Ti-6Al-4V (Ti-64) coatings were prepared on commercial Ti-64 substrates via a high-pressure cold spray process. The coatings were heat treated at different temperatures of 400–1000°C to investigate the effect of heat treatment temperature on their microstructure and mechanical and tribological properties. The increased heat treatment temperature from 400 to 600°C promoted diffusion between sprayed Ti-64 particles. Recrystallization of the sprayed particles was found at the heat treatment temperature of 800°C and grain growth was found in the microstructure of the coating heat treated at 1000°C. The highest and lowest hardnesses of the heat-treated coatings were found at heat treatment temperatures of 400 and 800°C, respectively. Therefore, the lowest and highest specific wear rates of the coatings were consistently found at 400 and 800°C due to their highest and lowest abrasive wear resistances associated with their highest and lowest surface hardnesses, respectively. The coating heat treated at 400°C showed the highest surface hardness of 470.1 Hv and lowest specific wear rate of 69.6 × 10?14 m3/Nm. It could be concluded that the microstructure and mechanical and tribological properties of the Ti-64 coatings were significantly influenced by heat treatment temperature.  相似文献   

10.
Electric hot incremental forming of Ti-6Al-4V titanium sheet   总被引:2,自引:2,他引:0  
Electric hot incremental forming of metal sheet is a new technique that is feasible and easy to control to form hard-to-form sheet metals. In the present study, Ti-6Al-4V titanium sheet was studied because it was wildly used in the aeronautics and astronautics industries. Although Ti-6Al-4V titanium can be well-formed in high temperature, the surface quality is a problem. In order to enhance the surface quality, it is very important to select the proper lubricant. At the same time, because Ti-6Al-4V titanium has a lively chemical property, it is very important to choose a processing temperature range in order to acquire excellent plastic property and to prevent oxidation. Various lubricants were selected in processing to compare the effect, and some workpieces were formed at different temperatures to find the best forming temperature. The results show that using the lubricant film of nickel matrix with MoS2 self-lubricating material, Ti-6Al-4V titanium workpiece was formed with high surface quality, and the optimum thickness of composite coating is 20 μm for Ti-6Al-4V titanium sheet of 1.0-mm thickness. In fact, the lubricant film also does help to prevent oxidation of Ti-6Al-4V titanium sheet. The appropriate temperature range of Ti-6Al-4V forming with slightly oxidized is 500–600°C in processing, and the maximum draw angle formed in this range was 72°.  相似文献   

11.
Ti-6Al-4V alloy is an attractive material in many industries due to its unique and excellent combination of strength to weight ratio and their resistance to corrosion. However, because of its low thermal conductivity and high chemical reactivity, Ti-6Al-4V alloy is generally classified as a difficult-to-cut material that can be characterized by low productivity and rapid tool wear rate even at conventional cutting speeds. It is well known that tool wear has a strong relationship with the cutting forces and a sound knowledge about correlation between cutting forces variation and tool wear propagation is vital to monitor and optimize the automatic manufacturing process. In the present study, high-speed end-milling of Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools under dry cutting conditions is experimentally investigated. The main objective of this work is to analyze the tool wear and the cutting forces variation during high-speed end-milling Ti-6Al-4V alloy. The experimental results show that the major tool wear mechanisms in high-speed end-milling Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools are adhesion and diffusion at the crater wear along with adhesion and abrasion at the flank wear. The cutting force component in the negative y-direction is more dominant of the three components and displays significantly higher magnitudes than that of the other two components in x- and z-directions. The variation of cutting force component F y has a positive correlation with the tool wear propagation, which can be used as a tool wear indicator during automatic manufacturing process.  相似文献   

12.
采用有机粘结固体润滑剂(六方氮化硼和石墨)制备的涂层砂轮对钛合金进行了干磨削试验,研究了有机粘结固体润滑剂涂层砂轮在不同磨削工艺参数下对钛合金的磨削温度和工件表面质量的影响规律。试验结果表明,所制备的有机粘结固体润滑剂涂层砂轮干磨削钛合金工件时,磨削温度比无润滑剂涂层砂轮干磨削钛合金时下降11%~40%,工件表层显微组织未见明显变化。  相似文献   

13.
Influence of initial surface roughness on friction and wear processes under fretting conditions was investigated experimentally. Rough surfaces (Ra=0.15-2.52 μm) were prepared on two materials: carbon alloy (AISI 1034) and titanium alloy (Ti-6Al-4V). Strong influence of initial surface roughness on friction and wear processes is reported for both tested materials. Lower coefficient of friction and increase in wear rate was observed for rough surfaces. Wear activation energy is increasing for smoother surfaces. Lower initial roughness of surface subjected to gross slip fretting can delay activation of wear process and reduce wear rate; however, it can slightly increase the coefficient of friction.  相似文献   

14.
Machining titanium alloy Ti-6Al-4V is a challenging task since tool flank wear adversely affects surface integrity. Quantitative effects of predetermined tool flank wear values (VB) on the surface integrity were investigated through the orthogonal dry cutting of Ti-6Al-4V. Experimental results indicated that three-dimensional (3D) average surface roughness increased with the VB ranging from 0 to 0.2 mm but decreased at VB = 0.3 mm. Given the effects of rubbing and ironing enhanced, surface material burning and plastic flows emerged on the machined surface at VB = 0.3 mm. Not only the plastic deformation layer became deeper but also the grains were greatly distorted with the increase of tool flank wear. When machined by using the tool at VB = 0.3 mm, the β phase of Ti-6Al-4V decreased near the machined surface layer than that of using the fresh tool. Besides, the depth of work-harden layer increased from 20 to 60 μm with the VB increasing from 0 to 0.3 mm. The softened layer was generated near the machined surface by using the tool at VB = 0.3 mm. In addition, the residual compressive stresses of the machined surface had the trend of decreasing. Experimental results indicated that the VB less than 0.2 mm was the most suitable condition for better surface integrity during orthogonal dry cutting of Ti-6Al-4V. This study aims at providing experimental data for optimizing the processing parameters and improving the surface integrity of Ti-6Al-4V.  相似文献   

15.
Vacuum plasma spraying (VPS) and vacuum hot pressing (VHP) have been used to fabricate Ti-6Al-4V matrix composite material reinforced longitudinally with DERA Sigma C coated SiC 1140+ fibres. VPS of Ti-6Al-4V onto Sigma 1140+ SiC fibres caused no fibre/matrix interfacial reaction. During VHP a fibre/matrix reaction occurred, producing a mixture of fine (< 50 nm) TiCx (x ≤ 1) adjacent to the fibre coating and coarse-grained (0.3–0.5 μm) equiaxed TiCx adjacent to the Ti matrix. A decrease in C concentration with increasing distance from the C coating is proposed, and is consistent with the evidence presented. A similar thickness and morphology of reaction product arose from conventional foil–fibre foil processing, but the matrix coated fibre/hot isostatic pressing process led to a slightly thicker reaction layer. The TiCx reaction product acted as a diffusion barrier, inhibiting further reaction more effectively than in experiments on earlier SiC fibres having a C coating. Surface damage was shown to be a factor in lowering 1140+ SiC fibre failure stress. Surface damage to 1140+ fibres resulted from both VPS and VHP, the former causing a slight reduction in mean ultimate tensile strength (UTS), and a large reduction in the bend strain to failure Weibull modulus. This damage was caused by both fibre winding and by deposition of metal during VPS, giving rise to coating flaws, and is not in itself considered to be a major problem. Surface damage increased after VHP, reducing the mean UTS and tensile Weibull modulus, and the mean bend strain to failure. This damage arose from bending and flattening of the rough monotapes, and from the fibre/matrix reaction caused by thermal exposure. The level of damage to 1140+ SiC fibre from VHP was reduced by modification of the process path. Increasing the VHP temperature and lowering the pressure ramp rate reduced fibre damage sufficiently to enable a macroscopic composite UTS of 95% of the theoretical maximum to be achieved.  相似文献   

16.
The wear behavior of low-cost, lightweight 10 wt% titanium carbide (TiC)-particulate-reinforced Ti–6Al–4V matrix composite (TiC/Ti–6Al–4V) was examined under fretting at 296, 423, and 523 K in air. Bare 10 wt% TiC/Ti–6Al–4V hemispherical pins were used in contact with dispersed multiwalled carbon nanotubes (MWNTs), magnetron-sputtered diamond-like carbon/chromium (DLC/Cr), magnetron-sputtered graphite-like carbon/chromium (GLC/Cr), and magnetron-sputtered molybdenum disulfide/titanium (MoS2/Ti) deposited on Ti–6Al–4V, Ti–48Al–2Cr–2Nb, and nickel-based superalloy 718. When TiC/Ti–6Al–4V was brought into contact with bare Ti–6Al–4V, bare Ti–48Al–2Cr–2Nb, and bare nickel-based superalloy 718, strong adhesion, severe galling, and severe wear occurred. However, when TiC/Ti–6Al–4V was brought into contact with MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings, no galling occurred in the contact, and relatively minor wear was observed regardless of the coating. All the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings on Ti–6Al–4V were effective from 296 to 523 K, but the effectiveness of the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings decreased as temperature increased.  相似文献   

17.
This work deals with the influence of laser peening on the fretting wear behavior of Ti-6Al-4V. Laser peening was carried out on Ti-6Al-4V. The laser-peened surface was characterized by transmission electron microscopy. Surface roughness, nanoindentation hardness, residual stress, and tensile properties of the material in both laser-peened and unpeened conditions were determined. Fretting wear tests were conducted at different normal loads using a ball-on-flat contact geometry. Laser peening resulted in the formation of nanocrystallites on the surface and near-surface regions, increased hardness, and compressive residual stress. Laser peening did not affect the tensile properties and surface roughness significantly. There was no considerable difference between the values of the tangential force coefficient of laser-peened and unpeened samples. The fretting scar size, wear volume, and wear rate of laser-peened specimens were lower than those of unpeened samples. This may be attributed to an increase in surface hardness due to strain hardening and grain refinement at the surface and near-surface regions, higher compressive residual stress, and higher resistance to plastic deformation of laser-peened samples.  相似文献   

18.
Cr-doped and non-doped diamond-like carbon (DLC) films were deposited on a Ti–6Al–4V alloy substrate using an unbalanced magnetron sputtering (UBMS). Fretting wear behavior of the specimens was investigated using a ball-on-disk fretting tester. The fracture phenomenon of the DLC films was determined as the number of fretting cycles to reach a high value of the friction coefficient. The results showed that the Cr-doped and non-doped DLC films exhibited a lower friction coefficient and wear rate compared to that of the uncoated specimen. However, the Cr-doped DLC film fractured only in a few cycles, while the non-doped DLC film fractured after fretting cycles of about 200,000. A fracture mechanism of the Cr-doped and non-doped DLC films was reported in this study.  相似文献   

19.
The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V   总被引:1,自引:0,他引:1  
P.A Dearnley  K.L Dahm 《Wear》2004,256(5):469-479
The use of commercial purity titanium (CP-Ti) and Ti-6Al-4V alloys in bio-medical implant applications has been limited by their poor resistance to surface degradation processes. In this paper the corrosion-wear behaviour of untreated and thermally oxidised CP-Ti and Ti-6Al-4V have been compared. Oxidation of both alloys at 625 °C for 36 h resulted in the formation of an exterior layer of TiO2 (rutile) that had a hardness ∼1000 HV. Corrosion-wear tests were made in reciprocation sliding contact with an α-Al2O3 ball immersed in physiological saline (0.89% NaCl) at room temperature. The oxidation treatment retarded the corrosion-wear of both CP-Ti and Ti-6Al-4V. For the untreated alloys, surface damage was dominated by micro-asperity shearing which resulted in rapid wear. Corrosion-wear of the oxidised materials was slower but more complex. The exterior TiO2 layer formed on the oxidised Ti-6Al-4V alloy provided little protection, it was rapidly removed during the first 60 min of testing, by a process involving interfacial fracture. Conversely, the TiO2 layer, albeit thinner, provided protection for the oxidised CP-Ti. Here, the layer becomes smoothly worn by a process that is proposed to be caused by the mechanical dissociation of the TiO2-layer. For both oxidised titanium alloys the hardened oxygen diffusion zone (ODZ), formed beneath the TiO2 layer, provided good protection from corrosion-wear. In both cases the ODZ was smoothly worn by a combination of abrasion and corrosion-wear processes. The latter process, termed Type I corrosion-wear, involves the repetitive mechanical degradation of the passive film that forms through aqueous corrosion. However, this is a relatively slow process.  相似文献   

20.
The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti‐based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond‐like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball‐on‐disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top‐layer coating is significantly less than 10−6 mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号