首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Diesel exhaust particulate matter (DEP) was collected from three commercial diesel engine vehicles and DEP extracts (DEPEs) were prepared from each. The estrogenic and antiestrogenic activities of the DEPE samples were examined using an estrogen response element (ERE)-driven luciferase reporter gene assay in MCF-7 human breast cancer cells. While DEPE samples did not exhibit significant estrogen agonist activity alone, they suppressed 17 g -estradiol (E 2 )-induced luciferase activity without decreasing cell viability. Several polycyclic aromatic hydrocarbons (PAHs) acting as aryl hydrocarbon receptor (AhR) agonists were detected in the DEPEs and their concentrations were higher in DEPE samples with higher antiestrogenic activity. DEPE samples elevated cytochrome P450 (CYP) 1A1 activity. f -Naphthoflavone, an AhR antagonist, and SKF-525A, a nonselective CYP inhibitor, reversed and enhanced the antiestrogenic activity of DEPE samples, respectively. These results demonstrate that DEPE has antiestrogenic activity and this effect is primarily due to the PAH constituents acting as AhR agonists.  相似文献   

2.
Non-road diesel engines are important polycyclic aromatic hydrocarbon (PAH) sources in the environment due to their high emission concentration compared to on-road diesel engines. Particle- and gas-phase PAH concentrations of a non-road diesel engine were investigated. Non-thermal plasma (NTP) as an effective after-treatment technology was used to reduce PAH emissions. The results showed that particle-phase PAH concentrations were 329.7 µg/m3, 3,206.7 µg/m3, and 1,185.7 µg/m3 without the action of NTP at three different engine loads respectively. Relatively low concentrations were measured for gas-phase PAHs. Excellent linearity was shown for particle-phase with total PAH concentrations both with, and without, NTP. The gas-phase PAH concentrations linearly increased with engine load without NTP. The five most abundant compounds of PAHs were among low molecular weight (LMW) and medium molecular weight (MMW) compounds. Total PAH cleaning efficiency was beyond 50% when treated with NTP at the three different engine loads. We hypothesized that naphthalene (Nap) concentrations increased greatly at 60% and 80% engine loads because it was produced within the plasma zone by decomposition of high molecular weight (HMW) PAHs. The PAHs content of particulate matter (PM) aggregation at 60% load was approximately three times higher than at 40% and 80% loads. High correlation values were observed for MMW PAHs with total PAH concentrations. Correlations of PAH concentration reduction could be important to clarify the PAH reduction mechanism with NTP technology.  相似文献   

3.
Chao He  Yunshan Ge  Jianwei Tan  Xiukun Han 《Fuel》2010,89(8):2040-10343
With mutagenic and carcinogenic potential, polycyclic aromatic hydrocarbons (PAHs) from mobile source exhaust have contributed to a substantial share of air toxics. In order to characterize the PAHs emissions of diesel engine fueled with diesel, biodiesel (B100) and its blend (B20), an experimental study has been carried out on a direct-injection turbocharged diesel engine. The particle-phase and gas-phase PAHs in engine exhaust were collected by fiberglass filters and “PUF/XAD-2/PUF” cartridges, respectively, then the PAHs were determined by a gas chromatograph/mass spectrometer (GC/MS). The experimental results indicated that comparing with diesel, using B100 and B20 can greatly reduce the total PAHs emissions of diesel engine by 19.4% and 13.1%, respectively. The Benzo[a]Pyrene (BaP) equivalent of PAHs emissions were also decreased by 15.0% with the use of B100. For the three fuels, the gas-phase PAHs emissions were higher than particle-phase PAHs emissions and the most abundant PAH compounds from engine exhaust were naphthalene and phenanthrene. The analysis showed that there was a close correlation between total PAHs emissions and particulate matter (PM) emissions for three fuels. Furthermore, the correlation became more significant when using biodiesel.  相似文献   

4.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

5.
Diesel exhaust particles (DEP) are major constituents of ambient air pollution and are associated with respiratory and cardiovascular diseases as well skin cell alterations in vitro. The epidermal cells are among the first cell populations exposed to chemical pollutants, including DEP, and are an important source of pro-inflammatory mediators. We evaluated the effects of carbonaceous soot particles from current low-emission (Euro IV) diesel engines on the oxidative and inflammatory response of normal human skin cells and compared the results with those induced by carbonaceous soot particles from an older diesel engine (BS) operating under black smoke conditions. We observed that both soot nanoparticles were spontaneously internalised by keratinocytes and distributed mostly around the cell nucleus. Moreover, at the same mass concentration, Euro IV soot particles exhibited a much higher oxidative, pro-fibrotic and toxic potential on these cell types than soot particles from the older diesel engine. These results are in agreement with and confirm our previous findings on human macrophage cells and strengthen the assumption that, at the same mass concentration, soot particles produced under low emission conditions are more cytotoxic than particles from the older diesel engine. This effect could be assigned to the defective surface structure of Euro IV diesel soot, rendering it highly active. Our findings highlight that the reduction of soot emission in terms of mass does not automatically lead to a reduction of the dangerous effects and show that soot particles from different diesel engines possess different biological behaviour towards human cells.  相似文献   

6.

Background  

The exposure to pollutants such as diesel exhaust particles (DEP) is associated with an increased incidence of respiratory diseases. However, the mechanisms by which DEP have an effect on human health are not completely understood. In addition to their action on macrophages and airway epithelial cells, DEP also modulate the functions of dendritic cells (DC). These professional antigen-presenting cells are able to discriminate unmodified self from non-self thanks to pattern recognition receptors such as the Toll like Receptors (TLR) and Scavenger Receptors (SR). SR were originally identified by their ability to bind and internalize modified lipoproteins and microorganisms but also particles and TLR agonists. In this study, we assessed the implication of SR in the effects of DEP associated or not with TLR agonists on monocyte-derived DC (MDDC). For this, we studied the regulation of CD36, CXCL16, LOX-1, SR-A1 and SR-B1 expression on MDDC treated with DEP associated or not with TLR2, 3 and 4 ligands. Then, the capacity of SR ligands (dextran sulfate and maleylated-ovalbumin) to block the effects of DEP on the function of lipopolysaccharide (LPS)-activated DC has been evaluated.  相似文献   

7.
The present work focuses on the effect of waste cooking oil biodiesel on the particulate mass, number concentration, nanostructure, and oxidative reactivity under different engine speeds and engine loads. Particulate samples were collected from the diluted exhaust of a medium-duty direct injection diesel engine and were used to analyze the physico-chemical properties via the transmission electron microscope (TEM) and the thermogravimetric analyzer/differential scanning calorimeter (TGA/DSC). The TEM images reveal that smaller primary particles are formed at higher engine speed, lower engine load, or using biodiesel. Quantitative analysis of the nanostructures indicates more soot with more disordered configuration, in which shorter and more curved graphene layer is prevailing at lower engine load or when using biodiesel. Furthermore, the TGA results infer that the soot oxidative reactivity is closely related to the nanostructure properties and the effect of engine load is more pronounced than the effect of engine speed. Also biodiesel soot has faster oxidative reactivity than diesel soot. Moreover, results obtained for B30 (30% biodiesel and 70% diesel fuel) lie in between those for biodiesel and diesel fuel.

Copyright 2015 American Association for Aerosol Research  相似文献   

8.
Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier–engine system is analyzed by running the engine for various producer gas–air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described.  相似文献   

9.
This work investigates the impacts on fuel consumption and exhaust emissions of a diesel power generator operating with biodiesel. Fuel blends with 5%, 20%, 35%, 50%, and 85% of soybean biodiesel in diesel oil, and fuel blends containing 5%, 20%, and 35% of castor oil biodiesel in diesel oil were tested, varying engine load from 9.6 to 35.7 kW. Specific fuel consumption (SFC) and the exhaust concentrations of carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbons (HC) were evaluated. The engine was kept with its original settings for diesel oil operation. The results showed increased fuel consumption with higher biodiesel concentration in the fuel. Soybean biodiesel blends showed lower fuel consumption than castor biodiesel blends at a given concentration. At low and moderate loads, CO emission was increased by nearly 40% and over 80% when fuel blends containing 35% of castor oil biodiesel or soybean biodiesel were used, respectively, in comparison with diesel oil. With the load power of 9.6 kW, the use of fuel blends containing 20% of castor oil biodiesel or soybean biodiesel increased HC emissions by 16% and 18%, respectively, in comparison with diesel oil. Exhaust CO2 concentration did not change significantly, showing differences lower than ±3% of the values recorded for diesel oil operation, irrespective of biodiesel type, concentration and the load applied. The results demonstrate that optimization of fuel injection system is required for proper engine operation with biodiesel.  相似文献   

10.
Delayed human effects such as cancer could be a consequence of chronic exposure, over long periods of time, to inhalable (PM10) and respirable (PM2.5) particles containing environmental carcinogen mixtures. Air pollution in Santiago, Chile, is a major public health problem due to the high levels of regulated pollutants such as PM10, CO, and ozone. In this work, we studied the levels of polycyclic aromatic hydrocarbons (PAHs) onto PM10 and PM2.5 collected in diesel revision plants, in an urban area with a high flow of buses and trucks and in a rural area not exposed to diesel emissions. The PM10 average levels in diesel emission plants were higher than the Chilean PM10 standard and higher than those found in the urban and rural areas. In the urban area the PM10 average levels were lower than the Chilean PM10 standard, although some 24 h levels surpassed the levels established to decree preemergency or emergency and in some cases were higher than the levels reported by all the official monitoring stations. The levels of total PAHs onto PM10 were higher in the diesel plants than in the urban area and rural area, but the levels of six carcinogenic PAHs were similar in the diesel plants to those found in the urban area. Organic extracts from PM10 collected in diesel plants in Salmonella typhimurium TA98 in the presence and in the absence of an S9 activation system were significantly higher than in the urban area and rural area. Mutagenic activity with and without S9 in diesel plants and the urban area showed that indirect (PAHs) and direct (nitro-PAHs) mutagenic compounds are present in organic extracts from PM10. In conclusion, these results showed that in Santiago diesel emission particles were highly mutagenic and contain carcinogenic PAHs. This might represent a risk for long-term respiratory effects in Santiago's inhabitants.  相似文献   

11.

Background

Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ? 240 nm) on gestational days 9–19, for 1 h/day.

Results

Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances.

Conclusion

In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies.  相似文献   

12.
An experimental investigation was performed to study the influence of dual-fuel combustion characteristics on the exhaust emissions and combustion performance in a diesel engine fueled with biogas-biodiesel dual-fuel. In this work, the combustion pressure and the rate of heat release were evaluated under various conditions in order to analyze the combustion and emission characteristics for single-fuel (diesel and biodiesel) and dual-fuel (biogas-diesel and biogas-biodiesel) combustion modes in a diesel engine. In addition, to compare the engine performances and exhaust emission characteristics with combustion mode, fuel consumption, exhaust gas temperature, efficiency, and exhaust emissions were also investigated under various test conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by two electronically controlled gas injectors, which were installed in the intake pipe.The results of this study showed that the combustion characteristics of single-fuel combustion for biodiesel and diesel indicated the similar patterns at various engine loads. In dual-fuel mode, the peak pressure and heat release for biogas-biodiesel were slightly lower compared to biogas-diesel at low load. At 60% load, biogas-biodiesel combustion exhibited the slightly higher peak pressure, rate of heat release (ROHR) and indicated mean effective pressure (IMEP) than those of diesel. Also, the ignition delay for biogas-biodiesel indicated shortened trends compared to ULSD dual-fueling due to the higher cetane number (CN) of biodiesel. Significantly lower NOx emissions were emitted under dual-fuel operation for both cases of pilot fuels compared to single-fuel mode at all engine load conditions. Also, biogas-biodiesel provided superior performance in reductions of soot emissions due to the absence of aromatics, the low sulfur, and oxygen contents for biodiesel.  相似文献   

13.
Particulate matter (PM) emitted from a dual fuel engine is characterized using thermogravimetry, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Thermogravimetric analysis (TGA) provides the mass fractions of elemental carbon and volatile materials in PM; XPS provides the possible chemical compositions in the topmost layer of PM surface and Raman analysis provides the possible structure of the carbon presented in PM. Dual fuel engine uses both liquid (diesel) and gaseous fuels simultaneously to produce mechanical power and can be switched to only diesel fueling under load. The dual fuel engine is operated with natural gas and simulated biogases (laboratory prepared) and results are compared between the dual fueling and diesel fueling under the same engine operating conditions. Significantly higher volatile fractions in PM are obtained for dual fueling compared to diesel fueling complementing the gravimetric results. The maximum contribution of the graphitic carbon or aliphatic carbon such as hydrocarbons and paraffins (C═C or C─C) are found in the topmost atomic layers of both the diesel and dual fuel PM samples. The other chemical states are found to be the carbon-oxygen functional groups indicating significant oxidation behavior in the PM surface. Lesser aromatic content is noticed in the case of dual fuel PM than diesel PM. The carbon in dual fuel PM is found to be more amorphous compared to diesel PM. These characterizations provide us new information how the PM from a diesel engine can be different from that from a dual fuel engine.  相似文献   

14.
H.E. Saleh 《Fuel》2008,87(13-14):3031-3039
This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel #3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel #3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method.  相似文献   

15.
In this article, the effects of fumigation methanol, diesel oxidation catalyst, and engine operation parameters (engine load and engine speed) on diesel smoke opacity, particulate mass concentration, particulate number concentration and the soluble organic fraction (SOF) in the particulate were investigated at certain selected operation conditions. Experiments were performed on a 4-cylinder direct injection diesel engine operating at three engine speeds and three loads for each engine speed. For each engine speed, there was a decrease of smoke opacity with increase in the level of fumigation methanol. The reduction was particularly obvious at the high engine load but was not significant at the low and medium engine loads. For all test conditions, fumigation methanol could effectively reduce the particulate mass and number concentrations. However, fumigation methanol increased the fraction of SOF in the particles. The DOC could further reduce the particulate mass and number concentrations as well as the fraction of SOF in the particles when the exhaust gas temperature was sufficiently high.  相似文献   

16.
The particulate matter (PM) emitted from a single-cylinder compression-ignition, natural-gas engine fitted with a High-Pressure Direct-Injection (HPDI) system distinctly different from a duel fuel engine was investigated, and characterized by size distribution, morphology, mass-mobility exponent, effective density, volatility, mixing state, and primary particle size using transmission electron microscopy (TEM), and tandem measurements from differential mobility analyzers (DMA) and a centrifugal particle mass analyzer (CPMA). Six engine conditions were selected with varying load, speed, exhaust gas recirculation (EGR) fraction, and fuel delivery strategy. An increase in engine load increased both the number concentration and the geometric mean diameter of the particulate. The fraction of the number of purely volatile particles to total number of particles (number volatile fraction, NVF) was found to decrease as load increased, although at the lower speed, partially premixed mode, the lowest NVF. All size distributions were also found to be unimodal. The size-segregated ratio of the mass of internally mixed volatile material to total particle mass (mass volatile fraction, MVF) decreased with load and with particle mobility-equivalent diameter. A roughly constant amount of volatile material is likely produced at each engine mode, and the decrease in MVF is due to the increase in PM number with load. Effective density and mass-mobility exponent of the non-volatile soot at the different engine loads were the same or slightly higher than soot from traditional diesel engines. Denuded effective density trends were observed to collapse to approximately the same line, although engine modes with higher MVFs had slightly higher effective densities suggesting that the soot structures have collapsed into more dense shapes—a suspicion that is confirmed with TEM images. TEM results also indicated that primary particle size first decreases from low to medium load, then increases from medium to high load. An increase in EGR was also seen to increase primary particle size. Coefficients were determined for a relation that gives primary particle diameter as a function of projected area equivalent diameter. A decrease in load or speed results in a stronger correlation.

Copyright 2015 American Association for Aerosol Research  相似文献   

17.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

18.
This article presents a new methodology to potentially quantify polycyclic aromatic hydrocarbon (PAH) isomers using high-resolution time of flight aerosol mass spectrometer (HR-AMS). The fragmentation of PAHs within the HR-AMS is such that significant signal remains at the molecular ion. After quantifying the molecular ion signal and taking into account potential interferences, the amount of the parent PAH in the aerosol may be inferred once its fragmentation pattern is also known. The potential of this approach was evaluated using mixed gasoline and diesel engine exhaust sampled under varying conditions. This dataset led to the identification and quantification within the aerosol mass spectra of the molecular ions associated with 53 PAH isomers, including both unsubstituted and functionalized species. An evaluation of anticipated interferences shows that interferences from larger molecular weight PAHs (i.e., PAH/PAH interferences) could be constrained based on the fragmentation behavior of PAHs from existing HR-AMS laboratory spectra. Other signal interferences for this data set are typically less than 5% of the total signal or, for 13C isotopic interferents, are well constrained by measurements of the dominant isotope. The experimental data reveal that the fractional PAH molecular ion signal remained stable despite dramatic temporal variability of the total particulate organic signal. The fractional contributions of the molecular ions for grouped PAH species and even individual compounds were remarkably consistent across experiments. The distribution of PAHs showed no apparent dependence on engine load or exhaust type. Full application of this approach will require a greater number of standard HR-AMS spectra for PAHs, so that the relationship between compounds and their molecular ions may be understood more precisely.

Copyright 2015 American Association for Aerosol Research  相似文献   

19.
This work is focused on the measurement and analysis of the smoke opacity resulting from a Diesel engine fuelled with conventional fuel and biofuels under transient conditions. Methyl esters obtained from used cooking and unused vegetable oils were tested as diesel fuels, pure and blended with 30% and 70% of a commercial diesel fuel which was also used pure. A commercial engine was mounted in a test bench prepared for operating in different transient conditions. A smoke meter AVL 439 allowed for the study of the effect of these fuels on the smoke opacity under varied operating conditions. The thermo chemical properties of the test fuels and the engine parameters, such as fuel/air ratio or exhaust gas recirculation (EGR) ratio, were used for the analysis and interpretation of the results. The engine transient processes studied were (a) engine start, (b) load increase at constant engine speed and (c) engine speed decrease at constant torque. These results suggested that the use of the diesel blends containing vegetable esters is an interesting alternative for a significant reduction in smoke opacity not only in steady conditions but also in transient engine operation, the latter being the most usual condition in passenger vehicles.  相似文献   

20.
This paper addresses gaseous emissions smoke (soot) and particulate matter in large-scale diesel engine exhaust. The test engine was a large-scale turbocharged, after-cooled mean speed ( 500 rpm) direct-injection diesel engine and the power per cylinder was about 1 MW. Emission measurements were carried out on burning heavy fuel (HFO) and light fuel (LFO) oils. The test modes for the investigation were a propulsion mode (marine application) and a generator mode (power plant application). Gaseous emissions were measured according to the IMO technical code, smoke (soot) emissions were determined optically and particulate matter (PM) was measured by gravimetric impactor designed for five size fractions. In comparison the emissions from HFO and LFO utilisations indicate slightly higher NO and CO emissions for HFO, while LFO gives clearly higher emissions of hydrocarbons (HC). Emissions of soot and CO appeared to correlate very well, being very high for both fuels throughout the propulsion mode and low load, otherwise being similar for both modes. PM emissions are more than three times higher with HFO than with LFO and appear to decrease with the load except for HFO during the generator mode where an increase of PM emissions with the load is seen. Some data on sampled particles is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号