首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The study of laser cladding of 90Ti-10Al2O3, 90Ti-8Al2O3-2Zn and 90Ti-4Al2O3-6Zn coatings onto Ti-6Al-4V alloy, with intention to produce defect-less, high microhardness and wear resistant coating was carried out. The coatings were deposited onto Ti-6Al-4V alloy at 900 W laser power and 0.6 m/min laser scan speed. Microstructures and phase constituents of the developed coatings were investigated by using a scanning electron microscope (SEM) and X-ray diffractometer correspondingly. Vickers microhardness tester and pin-on-disk tribometer were employed to characterize microhardness and wear behaviour of the Ti-Al2O3/Zn coatings respectively. SEM was also used to examine the worn track. It was observed that 90Ti-10Al2O3 coating yielded optimal microhardness along with maximal wear resistance in comparison to the other coatings and Ti-6Al-4V alloy. It has been established that laser cladding of Ti-Al2O3 coating with Zn contents on Ti-6Al-4V alloy alleviates the formation of cracks, however, microhardness and wear properties are negatively affected.  相似文献   

2.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

3.
《Wear》2006,260(9-10):976-983
In this paper, the tribological and electrochemical corrosion properties of Al2O3/polymer nanocomposite coatings were studied by using micro-hardness test, single-pass scratch test, abrasive wear test, and finally electrochemical technique such as potentiodynamic polarization measurement. The coatings containing Al2O3 nanoparticles showed improvement in scratch and abrasive resistance compared with that of polymer coating. The improvement in scratch and abrasive resistance is attributed to the dispersion hardening of Al2O3 nanoparticles in polymer coatings. Corrosion test results showed that the embedded Al2O3 nanoparticles in polymer matrix do not sacrifice the corrosion resistance of the polymer itself.  相似文献   

4.
In this research, silver and alumina particles were co-deposited within Ni–P matrix to obtain Ni–P–Ag–Al2O3 hybrid coating. The structure of coatings was analyzed by X-ray diffraction and the tribological properties of deposits were evaluated by pin on disc tribometer. 3D optical profiler and scanning electron microscopy were used to study wear rate and worn surfaces. The results showed that Ni–P–Ag and Ni–P–Ag–Al2O3 coatings have the self-lubrication property and maximum hardness (∼1310 HV) and wear resistance were obtained for Ni–P–Al2O3 coating. Also, Ni–P–Ag–Al2O3 hybrid nanocomposite coating had higher wear resistance than Ni–P and Ni–P–Ag coatings. Moreover, the best conditions was achieved for heat treated hybrid coating in the concentration of 30 mg/L silver and 150 mg/L alumina in the plating solution.  相似文献   

5.
The aim of the study was to determine the interactions between standard antiwear zinc dialkyldithiophosphate (ZDTP)-type additives and composite coatings containing hard phases of Al2O3, SiC, and TiN in the nickel matrix. The analysis was conducted for selected ceramic materials with different structures and different tribological behavior of ionic, covalent, and metallic bonds. The composite coatings were deposited on C45 steel using the high-velocity oxygen-fuel (HVOF) process. This process efficiently uses high kinetic energy and controlled thermal output to produce dense, low porosity coatings with highly predictable chemistries that are homogeneous in structure. The coatings can operate under harsh service conditions, because they are characterized by higher durability and higher wear and corrosion resistance. It was necessary to determine the interactions between the ZDTP-type antiwear additives (zinc dialkyldithiophosphates) and the coatings. The tribological properties of nickel and nickel-based composite coatings were examined by means of a T-01 M tester functioning in the ball-on-disc configuration during technically dry friction and boundary lubricated friction with lubricants containing 1% ZDTP. The comparative analysis confirmed different tribochemical activity and, accordingly, different tribological effectiveness of the nickel and nickel-based composite coatings during friction.  相似文献   

6.
K.V. Kumar  M.C. Shaw 《Wear》1982,82(2):257-270
The transfer and wear characteristics of two widely used abrasive materials (A12O3 and SiC) are studied when grinding two difficult materials (AISI T15 tool steel and Ti-6Al-4V titanium alloy). A newly developed accelerated wear technique (cluster overcut flygrinding) is employed together with Auger electron spectroscopy, X-ray diffraction and scanning transmission electron microscopy. Experimental results suggest that when grinding steel the wear of SiC is primarily due to oxidation, while the wear of Al2O3 is primarily due to metal build-up, resulting in microchipping. When a titanium alloy is being ground, both types of abrasive result in a microchipping type of wear, the rate of which decreases when the wheel speed is reduced.  相似文献   

7.
The use of metal matrix composite structures in biomedical implants can be a solution for decreasing the amount of degradation products. Thus, the present work aims to investigate the synergism between corrosion and wear on CoCrMo matrix 10% (vol) Al2O3 particle reinforced composites in phosphate buffer solution (PBS) at body temperature. Corrosion behavior was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization. Tribocorrosion tests were performed under open circuit potential, as well as under cathodic and anodic potentiostatic conditions using a reciprocating ball-on-plate tribometer. Results suggest that the addition of Al2O3 particles did not create a significant effect on corrosion behavior of CoCrMo alloy, however, it increased the wear resistance and decreased the corrosion kinetics when sliding in PBS solution.  相似文献   

8.
Ti-6Al-4V alloy is an attractive material in many industries due to its unique and excellent combination of strength to weight ratio and their resistance to corrosion. However, because of its low thermal conductivity and high chemical reactivity, Ti-6Al-4V alloy is generally classified as a difficult-to-cut material that can be characterized by low productivity and rapid tool wear rate even at conventional cutting speeds. It is well known that tool wear has a strong relationship with the cutting forces and a sound knowledge about correlation between cutting forces variation and tool wear propagation is vital to monitor and optimize the automatic manufacturing process. In the present study, high-speed end-milling of Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools under dry cutting conditions is experimentally investigated. The main objective of this work is to analyze the tool wear and the cutting forces variation during high-speed end-milling Ti-6Al-4V alloy. The experimental results show that the major tool wear mechanisms in high-speed end-milling Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools are adhesion and diffusion at the crater wear along with adhesion and abrasion at the flank wear. The cutting force component in the negative y-direction is more dominant of the three components and displays significantly higher magnitudes than that of the other two components in x- and z-directions. The variation of cutting force component F y has a positive correlation with the tool wear propagation, which can be used as a tool wear indicator during automatic manufacturing process.  相似文献   

9.
Wear rates for cast aluminium and Al-Si alloys containing up to 5 wt.% γ-Al2O3 particles (100 μm size) were determined under conditions of adhesive wear and abrasive wear against a hardened steel disc and an alumina abrasive cloth sheet respectively. The adhesive wear rate of aluminium containing 5 wt.% A12O3 dispersions is similar to that of Al-11.8Si eutectic alloy and slightly higher than that of A1-16Si hypereutectic alloy. Al-3wt. %Al2O3 and Al-5wt.%Al2O3 composites perform better than Al-11.8Si and Al-16Si hypereutectic alloys under abrasive wear conditions. Al-11.8Si and Al-16Si alloys have a lower abrasive wear resistance than pure aluminium. The results indicate that Al2O3 particles can be used as a substitute for silicon as the hard dispersed phase in aluminium for wear-resistant and abrasion-resistant applications.  相似文献   

10.
Carbon nanotubes (CNT) have received considerable interest in many industries, but composite coatings of CNTs have not yet been sufficiently developed for use in biomedical implants. This investigation elucidates the wear and corrosion behavior of electroplated Ni/CNT composite coatings on Ti–6Al–4V alloy in Hanks’ solution. Experimental results indicate that the CNTs in an electroplated Ni/CNT composite coating increase its hardness to 98.5% higher than that of a pure Ni coating. Additionally, an Ni/CNT composite coating can form stable and dense passive film, which significantly improves wear and corrosion in Hanks′ solution.  相似文献   

11.
The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V   总被引:1,自引:0,他引:1  
P.A Dearnley  K.L Dahm 《Wear》2004,256(5):469-479
The use of commercial purity titanium (CP-Ti) and Ti-6Al-4V alloys in bio-medical implant applications has been limited by their poor resistance to surface degradation processes. In this paper the corrosion-wear behaviour of untreated and thermally oxidised CP-Ti and Ti-6Al-4V have been compared. Oxidation of both alloys at 625 °C for 36 h resulted in the formation of an exterior layer of TiO2 (rutile) that had a hardness ∼1000 HV. Corrosion-wear tests were made in reciprocation sliding contact with an α-Al2O3 ball immersed in physiological saline (0.89% NaCl) at room temperature. The oxidation treatment retarded the corrosion-wear of both CP-Ti and Ti-6Al-4V. For the untreated alloys, surface damage was dominated by micro-asperity shearing which resulted in rapid wear. Corrosion-wear of the oxidised materials was slower but more complex. The exterior TiO2 layer formed on the oxidised Ti-6Al-4V alloy provided little protection, it was rapidly removed during the first 60 min of testing, by a process involving interfacial fracture. Conversely, the TiO2 layer, albeit thinner, provided protection for the oxidised CP-Ti. Here, the layer becomes smoothly worn by a process that is proposed to be caused by the mechanical dissociation of the TiO2-layer. For both oxidised titanium alloys the hardened oxygen diffusion zone (ODZ), formed beneath the TiO2 layer, provided good protection from corrosion-wear. In both cases the ODZ was smoothly worn by a combination of abrasion and corrosion-wear processes. The latter process, termed Type I corrosion-wear, involves the repetitive mechanical degradation of the passive film that forms through aqueous corrosion. However, this is a relatively slow process.  相似文献   

12.
Guoliang Pan  Qiang Guo  Weidong Zhang  Aiguo Tian 《Wear》2009,266(11-12):1208-1215
The influence of diameter and content of Al2O3 particles on the tribological behaviors under fretting wear mode was investigated. The surface of PEEK composite and steel ball were examined by SEM and EDS, to identify the topography of wear scar and analyze the distribution of chemical elements in the friction counterparts, respectively. It can be found that the filling of Al2O3 powder improves the fretting wear resistance of PEEK composite. With the increase of Al2O3 diameter, the area of wear scar on specimen increases first and decreases afterward. However, the wear of composites increases monotonically with increasing Al2O3 content. Although the filling of 10 wt.% and 200 nm PTFE powder in PEEK makes the lowest wear of all specimens, no synergistic effect was found when Al2O3 and PTFE were filled into PEEK composite together. For the friction pair of PEEK composite and steel ball, abrasive wear and adhesive wear dominate the fretting wear mechanism during fretting. Thermal effect plays a very important role during fretting; thus the property of temperature resistance for polymer material would affect the wear degree on the surface of wear scar.  相似文献   

13.
The effect of the sliding speed on friction and wear characteristics of plasma-sprayed ceramic coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3, Al2O3-modified) was studied. Plasma-sprayed coatings are not hard and have high layered structure. Abrasion of coatings in the friction pair with steel and bronze counter-bodies occurs through brittle detachment conglomerated regions with low cohesive resistance. The modified coating (Al2O3) has the highest wear resistance and the lower coefficient of friction compared to the coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3) in the studied velocity range (0.1–10 mm/s). Laser melting can be used as an efficient way of increasing the tribotechnical properties of plasma-sprayed oxide coatings.  相似文献   

14.
The performance of several composite coatings sliding against ultrahigh molecular weight polyethylene was evaluated in 3 h screening tests. The most promising coatings were then selected to run in 48 h wear tests, both dry and in the presence of distilled water. Composite coatings containing particles of Al2O3 and Cu and of 18-8 stainless steel and Al2O3 in epoxy matrices exhibited thermal, frictional and surface wear characteristics similar to those seen when 316 stainless steel was run against ultrahigh molecular weight polyethylene.  相似文献   

15.
为改善MoS2基固体润滑涂层的摩擦磨损性能和耐蚀性能,制备了不同石墨烯(GE)添加量的MoS2复合涂层,利用HSR-2M摩擦磨损试验机测试了复合涂层的摩擦磨损性能,并分析了其磨损机理,通过极化曲线、交流阻抗谱(EIS)研究了涂层在3.5%NaCl溶液中的电化学腐蚀行为。试验结果表明,0.8-GE/MoS2复合涂层的摩擦磨损和耐腐蚀性能最优,其平均摩擦因数和磨损率分别为0.232和2.379×10-13 m3/(N·m),较未添加石墨烯的MoS2涂层分别降低了49.56%和43%,腐蚀速率(1.96×10-8 A/cm2)较纯MoS2涂层(5.54×10-6 A/cm2)降低了近2个数量级。石墨烯的二维片状结构具有良好的自润滑性能,在涂层中均匀分布时能有效阻隔腐蚀介质的渗透,因此,石墨烯的添加提高了MoS2基复合涂层的摩擦学性能和耐腐蚀性能,石墨烯的最优添加量为0.8%(质量分数)。  相似文献   

16.
Al2O3/Cu composites (1.0 vol%) reinforced with different size of α-Al2O3 particles were fabricated by a powder metallurgy method and electrical sliding wear tests were performed on a self-made pin-on-disk electrical wear tester. The effect of Al2O3 particle size on electrical wear performance of the Al2O3/Cu composite was studied, and the wear mechanism of the Al2O3/Cu composite was also discussed based on worn surface observations. The results show that the tribological properties of A12O3/Cu composite are closely related to the mechanical properties. With an increase in Al2O3 particle size, the wear rates of A12O3/Cu composites have a reverse variation with hardness of A12O3/Cu composites. In the range of 50–100 nm, Al2O3/Cu composites have the highest wear resistance and mechanical properties. Microstructural observation revealed that the wear mechanisms of Al2O3/Cu composites were mainly adhesive wear and plastic deformation accompanied by a small amount of arc damage. In addition, the plastic deformation area on the pin sample of the frictional end depends on the electrical wear resistance of A12O3/Cu composites.  相似文献   

17.
In this paper, the machining performance and wear mechanisms of two alumina-based ceramic cutting tools (Al2O3/TiB2 and Al2O3/TiB2/SiCw) in continuous turning of hardened steel and nickel based alloy (Inconel 718) were examined. Results showed that in turning of hardened steel performed under identical conditions, Al2O3/TiB2/SiCw tool exhibited lower flank wear resistance than that of Al2O3/TiB2 tool, the mechanisms responsible for this were determined to be the strong atom bonding between SiC and Fe, and the whisker pullout from the matrix for Al2O3/TiB2/SiCw ceramic tool. In continuous turning of Inconel 718, the Al2O3/TiB2/SiCw tool showed greatly improved flank wear resistance compared to Al2O3/TiB2 tool, adhesion and abrasion wear were found to be the dominant wear mechanisms, the adhesion and diffusion of Ni, and Cr of Inconel 718 to the tool rake face may accelerate the tool wear rates.  相似文献   

18.
TiB2 coatings have been studied as prospective protective layers to inhibit the interfacial reaction between SiC fibres and Ti-alloy matrices. This protective coating has been deposited onto SiC monofilament fibres using a chemical vapour deposition (CVD) technique. The fibre-matrix compatibility of these TiB2-coated SiC fibres in Ti-6Al-4V composites was evaluated by incorporating the coated fibres into Ti-6Al-4V using a diffusion bonding technique. The interfaces of this composite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis, to evaluate the interfacial microstructures, chemical stability and the efficiency of TiB2 as a protective coating for SiC fibres in Ti-alloy matrices, and to study the effects of deposition temperature on the interface of the coated fibre. Results show that stoichiometric TiB2 coatings are stable chemically to both SiC fibres and Ti-6Al-4V and hinder the deleterious fibre-matrix reactions effectively. Boron-rich TiB2 coatings should be avoided, as they lead to the formation of a needle-like TiB phase at the fibre–matrix interface. These findings provide promising evidence for the value of further exploration of the use of stoichiometric TiB2 as a protective coating for SiC fibre in Ti-based composites.  相似文献   

19.

In this study, Ta2O5, TiN, and TiO2 are coated with magnetron sputtering method as monolayer and bilayer on Ti6Al4V alloy used in biomedical applications. The deposited coatings are characterized, and their mechanical properties are determined by nanoindentation tests. As a result of the pin-on disc wear test performed in dry environment and room temperature, in vitro corrosion test was applied to the samples with high wear resistance, and the information about the tribological properties was obtained. Experimental results show that the existence of the intermediate layer has also significant effect on the corrosion resistance of the coatings. The biocompatibility of the Ta2O5/TiO2 coating was examined by keeping it in simulated body fluid (SBF) due to its noticeable wear and corrosion resistance properties, the growth of apatite, which is described as an indicator of biocompatibility, occurred on the sample surface after 7 day.

  相似文献   

20.
Improving the adhesion and wear endurance lifetimes of the solid lubricant molybdenum disulfide (MoS2) on titanium (Ti) alloys was studied in this experimental investigation. Ti-6Al-4V alloy specimens were implanted with gas ions or coated with ceramic layers prior to coating with sputtered MoS2 to investigate the adhesion and wear lifetimes of the MoS2 coatings. The greatest improvement in scratch adhesion (2.4 times Ti-6Al-4V coated directly with MoS2) was observed for an MoS2/diamond-like carbon/Si multilayer coating. Sliding wear tests revealed the greatest lifetime improvement (3.2 ×) was for an MoS2/TiC dual-layer coating. Increased MoS2 adhesion was observed for pretreated surfaces with a Vickers microhardness greater than 800 kgf/mm2. Increased adhesion of MoS2 for bond layers with lower elastic moduli (estimated) is suggested. Therefore the ratio hardness/elastic modulus may be a potential figure of merit for surface pretreatment selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号