首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation is conducted on the unexplored synergistic effects of multilayer graphene (MLG) and Ti3SiC2 in self-lubricating composites for use in high-temperature friction and wear applications. The tribological properties of TiAl matrix self-lubricating composites with different solid lubricant additions (Ti3SiC2-MLG, MLG) are investigated from room temperature to 800°C using a rotating ball-on-disk configuration. Tribological results suggest the evolution of lubrication properties of MLG and the excellent synergistic lubricating effect of MLG and Ti3SiC2 as the testing temperature changes. It can be deduced that MLG has great potential applications as a promising high-temperature solid lubricant within 400°C, and a combination of MLG and Ti3SiC2 is an effective way to achieve and maintain desired tribological properties over a wide temperature range.  相似文献   

2.
TiAl matrix self-lubricating composites (TMC) with various weight percentages of Ti3SiC2 and MoS2 lubricants were prepared by spark plasma sintering (SPS). The dry sliding tribological behaviors of TMC against an Si3N4 ceramic ball at room temperature were investigated through the determination of friction coefficients and wear rates and the analysis of the morphologies and compositions of wear debris, worn surfaces of TMC, and the Si3N4 ceramic ball. The results indicated that TMC with 10 wt% (Ti3SiC2-MoS2) lubricants had good tribological properties due to the unique stratification subsurface microstructure of the worn surface. The friction coefficient was about 0.57, and the wear rate was 4.22 × 10?4 mm3 (Nm)?1. The main wear mechanisms of TMC with 10 wt% (Ti3SiC2-MoS2) lubricants were abrasive wear, oxidation wear, and delamination of the friction layer. However, the main wear mechanisms of TMC without Ti3SiC2 and MoS2 lubricants were abrasive wear and oxidation wear. The continuous friction layer was not formed on the worn surfaces. The self-lubricating friction layer on the frictional surface, different phase compositions and hardness, as well as density of TMC contributed to the change in the friction coefficient and wear rate.  相似文献   

3.
In this study, the tribological properties of polytetrafluoroethylene (PTFE) composites filled with polyetheretherketone (PEEK) and nano-Al2O3 particles were studied using a block-on-ring wear tester. The tribological performance of the composites was affected by the experimental parameters (sliding speed, normal load, and environmental temperature) and the composites achieved a high-speed sliding friction state. The results showed that the PEEK and nano-Al2O3 particles significantly improved the wear resistance of the PTFE composites. In addition, the nano-Al2O3 particles increased the hardness of the composites and enhanced the mechanical properties to enable applications in a wider range of industrial fields. The effects of the sliding speed and normal load on the tribological properties were more significant than that of the environmental temperature. In addition, the entire wear process was divided into three stages (the initial wear stage, severe wear transition stage, and ultralow stable wear stage), according to the evolution of the tribological characteristics (wear rate, morphology of the worn surface and transfer film, and wear debris morphology).  相似文献   

4.
We report here on the friction behavior of fine- and coarse-grained Ti3SiC2 against steel and Si3N4 balls. Two successive friction regimes have been identified for both grain sizes and both counterparts. First, Type I regime is characterized by a relatively low (0.1–0.15) friction coefficient, and very little wear. Sliding occurs between a tribofilm on the ball and the Ti3SiC2 plane when against steel. Then, a Type II regime often follows, with increased friction coefficients (0.4–0.5) and significant wear. Compacted wear debris seems to act as a third body resulting in abrasion of the ball, even in the case of Si3N4. The transition between the two regimes occurs at different times, depending on various factors such as grain size, type of pin, and normal load applied. Some experiments under vacuum showed that the atmosphere plays also a major role. The reason for this evolution is not fully clear at that time, but its understanding is of major technological importance given the unusual good properties of this material.  相似文献   

5.
Lin  Xinhua  Zeng  Yi  Ding  Chuanxian  Zheng  Pingyu 《Tribology Letters》2004,17(1):19-26
Nanostructured and conventional Al2O3-3 wt% TiO2 coatings were deposited by atmospheric plasma spraying. The wear and friction properties of both coatings against a steel ball under dry friction conditions were examined. It was found that the wear resistance of the nanostructured Al2O3-3 wt% TiO2 coating was superior to that of the corresponding conventional counterpart. The improvement in wear resistance of the nanostructured coating was attributed to its higher toughness and cohesion strength between splats. As for the nanostructured coating, the wear mechanism was mainly adhesion with micro-abrasion at low loads (20 N). At high loads (80 N), the wear of the nanostructured coating was controlled by plastic deformation and associated delamination along the splat boundaries, which was similar to that of the conventional coating at low loads. However, the failure of the conventional coating was predominantly brittle fracture within the splats and delamination between splats at high loads.  相似文献   

6.
The tribological behaviors of tungsten carbide (WC) based cermet/Ti3SiC2 tribo-pair at elevated temperatures were investigated. Lead oxide (PbO) was added as a solid lubricant. The tribo-physical and tribo-chemical changes on sliding surfaces were studied in detail. The results indicated that adhesive and abrasive wear due to removal of metallic binder and pullout of grains were the dominant wear mechanisms at room temperature. At high temperature, tribo-physical changes (i.e. mechanical mixture or sintering) and tribo-chemical reactions including complex reaction and oxidations were induced by frictional heat combined with high environmental temperature. As a result PbWO4 was formed as a reaction product and acted as a solid lubricant. PbWO4 and tribo-oxides along with the physically changed layer on the sliding surfaces were favorable to reduce wear of both materials. At high temperature, the wear mechanism varied from adhesive and abrasive wear at room temperature to lubrication by tribo-layer containing PbWO4, tribo-oxides, and sinters at high temperatures.  相似文献   

7.
Abstract

In this work, Al-20Si-5Fe-2Ni/ZrB2 composites with 0–20?wt% ZrB2 were fabricated by spark plasma sintering. The effects of ZrB2 content on the microstructure, mechanical properties and high-temperature tribological behavior of the composites were investigated. The results indicate that Si, Al5FeSi, and ZrB2 particles are uniformly distributed in the aluminum matrix. The density, hardness, and compressive strength increase with increasing ZrB2 content. The friction coefficient and wear rate are dependent on the ZrB2 content and test temperature. At a certain temperature, the friction coefficient increases with an increase in ZrB2 content, whereas the wear rate shows a reverse trend. Due to the improvement in thermal stability and high-temperature softening resistance, the composite shows improved wear resistance and increased transition temperature from mild wear to severe wear.  相似文献   

8.
ZrO2 (Y2O3) with different contents of BaF2/CaF2 and Mo were fabricated by hot pressed sintering, and the tribological behavior of the composites against SiC ceramic was investigated from room temperature to 1000 °C. It was found that the ZrO2 (Y2O3)-5BaF2/CaF2-10Mo composite possessed excellent self-lubricating and anti-wear properties. The low friction and wear were attributed to enhanced matrix and BaMoO4 formed on the worn surfaces.  相似文献   

9.
J.H. Ouyang  S. Sasaki  T. Murakami  K. Umeda 《Wear》2005,258(9):1444-1454
Spark-plasma sintering is employed to synthesize self-lubricating ZrO2(Y2O3) matrix composites with different additives of CaF2 and Ag as solid lubricants by tailoring the composition and by adjusting the sintering temperature. The friction and wear behavior of ZrO2(Y2O3) matrix composites have been investigated in dry sliding against an alumina ball from room temperature to 800 °C. The effective self-lubrication at different temperatures depends mainly on the content of various solid lubricants in the composites. The addition of 35 wt.% Ag and 30 wt.% CaF2 in the ZrO2(Y2O3) matrix can promote the formation of a well-covered lubricating film, and effectively reduce the friction and wear over the entire temperature range studied. The friction coefficients at low temperatures were at a minimum value for the composite containing 35 wt.% of silver. At this silver concentration, low and intermediate temperature lubricating properties are greatly improved without affecting high-temperature lubrication by the calcium fluoride in ZrO2(Y2O3) matrix composites. The worn surfaces and transfer films formed during wear process have been characterized to identify the synergistic lubrication behavior of CaF2 and Ag lubricants at different temperatures.  相似文献   

10.
This article aims to study the friction and wear behavior of Ti3Al2.5V alloy sliding against EN-31 steel under dry condition using a multi-tribotester. The effect of variation in load and sliding velocity on wear rate, average coefficient of friction, and contact temperature has been studied and analysis of wear debris has been carried out. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were employed to study the morphology of the wear tracks and deduce microchemical information at the elemental level of worn samples, respectively. Results reveal that the wear rate of Ti-3Al-2.5V increases with increasing sliding velocity and increasing normal load with few exceptions. The average coefficient of friction decreases as the normal load increases with exceptions at some loads. SEM micrographs of worn samples obtained at different loads and sliding velocities show the formation of wear tracks on the surface due to ploughing and flaking of the matrix. The main mechanism responsible for wear of Ti3Al2.5V alloy sample is rupture of the matrix and abrasion. Wear debris analysis shows irregular-shaped wear particles with very sharp edges that appeared to be plastically deformed at high sliding velocity, whereas the wear debris is very loose and fine at lowest sliding velocity.  相似文献   

11.
Muscovite/La2O3 composite powders were prepared by ball-milling solid-state chemical reaction at room temperature. The phase composition and micromorphology of the composite powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The tribological properties of different samples were tested and compared using four-ball wear testing on an MMW-1A multifunctional friction and wear testing machine. The SEM micrography and energy spectrum of the composite powders illustrated that La2O3 particles were coated on the surface of muscovite particles. The results of the friction tests indicated that lubrication oil with muscovite/La2O3 composite powders presents better friction reducing and antiwear properties than that of the base oil, and the friction coefficients and diameters of wear scars decreased by 47.6 and 11.2% using 500SN base oil with 0.6g/L of muscovite/La2O3 composite powders as additives, respectively. The composite powders with 5 wt% La2O3 present the best comprehensive tribological properties. The micromorphology and chemical composition of the worn surface were analyzed by SEM and EDX, which confirm that the composite powders directly participate in the complicated physicochemical process of reactions on the worn surfaces, therefore improving the tribological properties of the base oil.  相似文献   

12.
Kim  S.J.  Cho  M.H.  Basch  R.H.  Fash  J.W.  Jang  H. 《Tribology Letters》2004,17(3):655-661
Tribological properties of particulate barite (BaSO4) and potassium titanate (K2O·6(TiO2)) whiskers, the two major ingredients currently used for commercial brake friction materials, were investigated. A novolac resin was used as a binder for test specimens and a block-on-disk tribometer was used to assess friction characteristics of the two ingredients. Experimental results showed that the BaSO4-filled composite produced large frictional oscillations and created severe damage on the gray iron counter surface, while the composite filled with the same amount of K2O·6(TiO2) whiskers showed smooth sliding without large friction force fluctuation. The cause of the different frictional behavior was investigated by considering stick-slip and mechanical properties of the composites, which was largely based on the morphology of the two ingredients and their role in reinforcing the composite. The results from this comparative study suggest that the friction characteristics of commercial friction materials can be strongly affected by the two ingredients, which have been considered as minor constituents for brake performance.  相似文献   

13.
Al2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying and their tribological properties dry sliding against copper alloy were evaluated using a block-on-ring configuration at room temperature. It was found that the wear resistance of Al2O3 coating was superior to that of the Cr2O3 coating under the conditions used in the present study. This mainly attributed to its better thermal conductivity of Al2O3 coating, which was considered to effectively facilitate the dissipation of tribological heat and alleviate the reduction of hardness due to the accumulated tribological heat. As for the Al2O3 coating, the wear mechanism was plastic deformation along with some micro-abrasion and fatigue-induced brittle fracture, while the failure of Cr2O3 coating was predominantly the crack propagation-induced detachment of transferred films and splats spallation.  相似文献   

14.
The effects of normal load and velocity on the friction and wear behavior of single-phase Fe2B bulk have been investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Results indicate that the friction coefficient and wear rate both decrease at first and then increase with increasing load and velocity, respectively. Attributed to the formation of a lamellar film on the Fe2B surface, the lowest friction coefficient and wear rate are obtained at a velocity of 0.2 m/s under a load of 12 N. The dynamic friction coefficients under loads of 4 and 12 N are around 0.8 in the initial steady stage and then decrease to about 0.6, whereas the friction coefficient at 20 N shows no obvious change and remains around 0.82. The lubricating film consisting of Fe2O3, B2O3, SiO2, and H3BO3 reduces the friction coefficient at 0.2 m/s under a load of 12 N.  相似文献   

15.
Al2O3–50BaSO4–20Ag, Al2O3–50BaSO4–10SiO2, Al2O3–50(mass%)SrSO4, Al2O3–50PbSO4–5SiO2, Al2O3–50BaSO4 and Al2O3–50BaCrO4 composites (mass%) were prepared by spark plasma sintering and their microstructure and high-temperature tribological properties were evaluated. Al2O3–50BaSO4–20Ag composites (mass%) showed the lowest friction coefficients at the temperature ranging from 473 to 1073 K. Thin Ag film was observed on the wear tracks of the composites above 473 K. In addition, the friction coefficients of Al2O3 composites containing SrSO4 and PbSO4 were as low as those of Al2O3–BaSO4 and Al2O3–BaCrO4 composites at the temperatures up to 1073 K. The thin films formed on the wear tracks of the Al2O3–SrSO4 composites were composed of Al2O3 and SrSO4 phases, while the films formed on the wear tracks of the Al2O3–PbSO4–SiO2 composites consisted of Al2O3, PbSO4 and SiO2 phases.  相似文献   

16.
Al2O3 particles reinforced Cu–Cr–Zr alloy matrix composite was fabricated through a powder metallurgy plus hot extrusion process by using the water atomization Cu–Cr–Zr powder as raw material. The effect of aging treatment on the tribological behavior of the composite was investigated. Experimental results show that tiny coherent precipitated phases were formed in the matrix after proper aging treatment and therefore good combination properties could be obtained. The wear rates of the Al2O3/CuCrZr composite and its matrix alloy were obviously influenced by the aging treatment, wherein the best wear resistance was reached at the aging temperature corresponding to the highest Vickers hardness. The major reason was that the depth of plastic deformation in the subsurface region was dramatically decreased due to the improvement of mechanical properties of the matrix, and therefore adhesion induced surface materials loss could be markedly alleviated. By comparing with the SiC20 vol%/Cu composite, it is indicated that the Al2O3/CuCrZr composite exhibited much better wear resistance as well as higher electrical conductivity.  相似文献   

17.
In this article, we developed Mo-based composites reinforced with aluminum and lanthanum oxides using a sol-gel method combined with a sintering process and researched the microstructure and frictional wear properties under high-temperature conditions. The microstructure of composites was characterized by α-Al2O3 and composite oxide (La0.62Mo0.38)AlO3, which were uniformly distributed in the molybdenum matrix. The composite oxide (La0.62Mo0.38)AlO3 was mainly attached to α-Al2O3. The interfaces of α-Al2O3/Mo and α-Al2O3/(La0.62Mo0.38)AlO3 were well bonded. The α-Al2O3 refined the molybdenum grains, increased the relative density and hardness of Mo-based composites, and had an obvious effect on the frictional wear properties of the composites. With increasing α-Al2O3 content, the friction coefficient first increased and then decreased, and the wear weight loss decreased continuously. The wear failure mode varied from microcutting to fatigue with increasing α-Al2O3 content. The better wear resistance of Mo-based composites, compared to pure molybdenum, was mainly attributed to the characteristics of α-Al2O3, such as high microhardness, good morphology, well-bonded phase interface, and high hardness matrix due to the effects of α-Al2O3 reinforcement.  相似文献   

18.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

19.
A recent paper by Hu et al. claimed synthesis of the MAX-phase Ti3SiC2at 100–300 °C using pulsed laser deposition. In this comment, we find that the evidence presented by Hu et al. is insufficient to show Ti3SiC2 formation. In fact, there is a simpler interpretation of their results from X-ray diffraction and transmission electron microscopy, namely that the material produced is a cubic TiC-based compound.  相似文献   

20.
In the current research, the wear behavior of an aluminum matrix nanocomposite material prepared via mechanical milling and hot extrusion was investigated. The sample powders were milled at different milling times up to 15 h to produce nanostructure powders. Mechanical milling was used to prepare nanocomposite samples by the addition of 10 wt% of Al3Mg2 nanoparticles into the Al matrix. A pin-on-disk setup was used to evaluate the wear properties of the hot-extruded samples under dry condition. Hardness values were used for further explanation of the observed results. Scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) analyzer was used to analyze the worn surfaces. The results revealed a lower friction coefficient and a lower wear rate for the unmilled nanocomposite sample in contrast to a commercial pure Al one. The same pattern was also observed in the milled nanocomposite samples with respect to the base matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号