首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
王达磊  陈艾荣  马如进 《工程力学》2013,30(10):244-250
强横风下大跨缆索承重桥梁的桥塔附近桥面风环境交替变化显著,极易导致汽车侧向失稳事故,针对途经桥塔附近桥面汽车气动力特性的研究对评价汽车侧向操纵稳定性尤为重要。该文进行了某分离钢箱梁斜拉桥独柱式桥塔附近桥面汽车模型测力风洞试验,获得了横风下汽车途经桥面不同位置时气动力特性的一般规律。设置风障前后桥塔附近桥面汽车气动力系数对比分析表明:风障可显著减小该类桥型塔区桥面汽车的侧力系数和横摆力矩系数,可减小大体量汽车的侧倾力矩系数和中、小体量汽车横摆力矩系数的变化幅值,风障对提高大风天途经桥塔附近桥面汽车的侧向稳定性作用明显。  相似文献   

2.
杭州湾南航道独塔斜拉桥抗风性能试验研究   总被引:7,自引:0,他引:7  
胡峰强  陈艾荣  林铁良 《工程力学》2006,23(8):132-137,167
杭州湾大桥为目前世界最长的跨海公路大桥,主桥包括南航道和北航道两座大跨度桥梁,抗风稳定性是控制主桥设计和施工的主要因素。采用单梁法力学计算模型对杭州湾南航道独塔斜拉桥成桥状态及施工状态进行动力特性分析,并通过节段模型风洞试验方法进行了测振试验和静三分力试验,即可测定颤振临界风速、气动导数、涡激振动响应、抖振响应和静力三分力系数,据此分析评估该桥的抗风性能。风洞试验结果表明:该桥具有较好的抗风稳定性。  相似文献   

3.
基于计算流体动力学理论,采用数值模拟的方法计算了高速列车通过双线简支箱梁桥时的气动力系数,考虑了轨道超高引起的列车风攻角、列车位于桥梁的横向位置、风障高度以及风偏角等因素的影响。根据列车运行于不同平曲线线路时的受力特点定义了列车倾覆系数,并参考有关标准设定了倾覆系数的容许值。在侧风风速为30 m/s情况下,计算了列车以不同速度通过设置有不同高度风障的桥梁时的倾覆系数,并据此选择了最优风障高度。计算结果表明:迎风侧线路上列车气动力系数比背风侧线路大,风障相对较低时升力系数随列车风攻角增大而增大;对迎风侧轮轨接触轴线和背风侧轮轨接触轴线的倾覆系数随车速和风障高度的变化规律均相反,最优风障高度由对背风侧轴线的倾覆系数决定;当列车处于迎风侧线路上时需设置的风障高度均比处于背风侧线路时高,即迎风侧线路是双线桥梁风障高度设置的控制线路;对于主导风向稳定的弯道,侧风从弯道内侧吹向列车时,最优风障高度随车速的增大而增大,从弯道外侧吹向列车时则与之相反;对于主导风向不稳定的弯道,应取侧风从外侧和内侧吹入时需设置风障的较大者。  相似文献   

4.
滑雪跳台与桥梁结构类似,风障也可以为跳台滑雪运动创造一个低速的比赛风环境。采用数值模拟的方法,研究了风障透风率对滑雪跳台挡风效果的影响,系统分析了涡旋结构、无量纲风速、风环境影响系数和湍流度随风障透风率的变化特性。结果表明:侧风作用下,风障的存在明显改变了滑雪道上空的风场结构,但同时在运动员跳跃高度处会产生较大的竖向风速分量,显著干扰比赛的公正性;滑雪道上空的风环境影响系数随风障透风率的增加呈减小后增大的趋势,其中透风率为10%~20%时风障挡风效果最优,其挡风效率高达79%~97%,同时也可以有效降低运动员跳跃高度处的竖向风速分量,但风场的湍流度会明显增大;考虑滑雪跳台主体结构对风荷载的作用较不敏感,应优选设置10%~20%透风率的风障。  相似文献   

5.
针对桥梁用Q500qE高强度结构钢,分别开展了梯度温度型双重拉伸试验、落锤试验和标准圆截面试样拉伸试验,测得了钢板的止裂温度CAT、无塑性转变温度TNDT、屈服强度Rel,在此基础上提出了CATTNDTRel及板厚t的相关性方程。由相关性方程得到的止裂温度计算结果与实测结果的偏差在±5℃以内,表明该方程能够较好地表征止裂温度与无塑性转变温度、屈服强度、板厚之间的相关性。  相似文献   

6.
台风气候大跨度桥梁风振响应研究   总被引:4,自引:0,他引:4  
以中国东南部沿海台风多发区3类典型大跨度桥梁为例,即长江三角洲区域舟山群岛西堠门大桥,上海长江大桥和珠江三角洲区域广州新光大桥,运用Monte-Carlo随机模拟算法,结合大量台风历史实测数据.再现了台风气候条件下桥位工程场地风环境参数取值特点;考虑桥梁结构几何非线性效应、多种气动力荷载共同子孟均风及瞬时风攻角效应,由时域有限元计算方法比较了良态与台风气候条件下大跨度桥梁风振响应.利用大气边鹘绮惴缍幢欢闪鞣⑸爸?再现了台风条件下新光大桥全桥气弹模型流场特征和风振响应过程,基于中跨拱肋二维节段模型高频天平测力试验识别了台风强紊流条件下气动导纳函数,进一步精细化地分析了台风条件下新光拱桥风致振动响应特点.  相似文献   

7.
该研究以涡河四桥桥梁承载性能作为研究对象,以提升工程质量为目的,分别采用静载试验和动载试验,对桥梁承载性能的试验检测过程与要点进行梳理,发现涡河四桥的桥梁承载能力与工程质量达到要求,为桥梁荷载试验检测工作提出了看法与建议。因此,在现代桥梁工程中,为提升桥梁的承载能力,夯实桥梁工程质量,做好桥梁荷载试验检测是一项十分重要的工作。该文紧密结合工程实践,以桥梁承载能力与工程质量为导向,对桥梁荷载试验检测要点进行了研究。  相似文献   

8.
李波  杨庆山  冯少华 《工程力学》2015,32(12):249-256
该文采用CFD数值模拟的方法研究了防风栅对高速列车的挡风作用。首先,根据附加源项法的基本原理,将防风栅等效为多孔介质,给出了对其挡风性能模拟的高效方法,通过与风洞试验对比,验证了该方法的有效性。在此基础上,研究了不同开孔率防风栅下游的流场特征,结果表明,40%开孔率的防风栅挡风性能较好。然后,应用动网格技术,仿真得到列车运行状态下的气动力,对比表明该文得到的列车气动力与实测结果相吻合。最后,通过脱轨系数和轮重减载率,评估了40%开孔率的防风栅遮挡下高速列车在横风作用下的安全性,结果表明,该种防风栅提高了列车在强风区的运行效率。  相似文献   

9.
韩艳  李凯  陈浩  蔡春声  董国朝 《工程力学》2018,35(4):124-134,185
强风不仅是大跨度桥梁设计的控制性因素,同时也会影响到桥上车辆运行的安全,车辆气动特性是研究车辆行驶安全性的前提。基于计算流体动力学(CFD)仿真平台,模拟计算了汽车工业研究协会(MIRA)小车和重型卡车典型车辆在横风作用下的气动特性,分析研究了典型车辆分别位于桥面上不同车道位置时车辆气动力系数随风偏角的变化情况;进一步模拟计算了重型卡车与小车之间的挡风效应,研究了车辆间相对位置对车辆挡风效应的影响。计算结果表明:不同车型以及不同的桥梁车道位置对车辆气动力均有不同程度的影响;重型卡车对MIRA小车有明显的挡风效应,MIRA小车气动力随着车辆间相对位置变化显著,重型卡车气动力也有一定改变。  相似文献   

10.
压力积分法在桥梁断面雷诺数效应研究中的应用   总被引:1,自引:0,他引:1  
表面压力积分方法不仅可以得到气动力均值,更重要的是可获得气动力的时程,从而可以计算气动力的RMS值和频率。通过该方法得到了刚性支撑断面的斯特罗哈数,并在试验雷诺数为2.7×104~1.4×106范围内研究了斯特罗哈数随雷诺数的变化规律。研究中发现扁平桥梁断面的斯特罗哈数有明显的雷诺数效应,而雷诺数为2×105~4×105区域内这一效应尤为明显。  相似文献   

11.
搭建了离心泵流动诱导噪声测试台,采用四端网络法声学测试模型,试验研究了离心泵性能和流动噪声随流量的变化规律,分析了空化发生时的流动噪声特性。通过研究不同叶轮切割量对模型泵外特性、流动噪声声压级和空化性能的影响,提出叶轮和隔舌之间的最佳间隙值。研究结果表明:在高效区运行时,模型泵进出口流动诱导噪声均随流量先减小,至效率最高工况点达到最小,然后上升;各流量下,随着空化余量的减小,模型泵进口噪声总声压级先缓慢增加,再迅速上升,达到极值后缓慢下降;随着叶轮切割量的增加,模型泵扬程跟叶轮直径的平方成正比,最高效率点向小流量工况偏移,临界空化余量变小;综和性能和流动噪声考虑,模型泵叶轮和隔舌的最佳间隙率为15%;在间隙值小于最佳值时,切割叶轮能显著降低噪声并提高模型泵的临界空化余量,并且对模型泵出口流动噪声的影响比进口明显。  相似文献   

12.
提出隔震结构的地震损伤模型,并采用概率密度演化理论分析隔震结构地震损伤指数的概率统计特征,为隔震结构性态目标的量化提供依据。考虑隔震支座的压剪相关性和拉压性能的差异,给出隔震层的损伤指数模型,再利用Park-Ang损伤指数描述上部结构的损伤状况,建立隔震体系的损伤指数模型;将隔震结构简化为双质点模型,采用Bouc-Wen模型和刚度退化的Bouc-Wen模型分别描述隔震层与上部楼层的滞变特性,建立隔震结构的状态方程,应用四阶龙格-库塔方法迭代求解求解出隔震结构的位移反应和滞变耗能,进而求解隔震结构的损伤指数;建立隔震结构损伤指数的概率密度演化方程,求解损伤指数的统计特征和概率密度函数,然后根据极值分布理论计算损伤指数超过不同性能水准的可靠度。本研究为以可靠度为理论基础的隔震结构损伤分析提供了可借鉴的方法。  相似文献   

13.
为深入研究接触网系统在风载荷作用下接触线形成的风振响应,采用流体力学软件Fluent模拟计算形状不规则接触线截面的气动力参数,由其获得接触线与承力索的风载荷模型。在有限元软件MSC-Marc中建立京津城际铁路接触网整体模型,并利用MSC-Marc用户子程序功能实现接触网中接触线及承力索的风载荷动态输入,求解得接触线在不同风速、不同初始风攻角风载荷作用下产生的风振响应。结果表明,由于接触线的气动特性,任意风攻角风载荷作用下接触线竖直方向振动位移均值为负值,会加剧弓网间相互作用;接触线扭矩系数很小可忽略不计,接触线发生驰振原因之一为升力系数随攻角变化较大,在风攻角25º左右最可能发生驰振现象。  相似文献   

14.
在白噪声环境激励下,结构加速度响应的自相关/互相关函数构成一个新的二次协方差(CoC)矩阵,组成这一协方差矩阵的元素经证明是结构模态参数(频率、振型、阻尼)的函数;与提取模态参数的一般损伤识别方法相比,二次协方差矩阵包含结构振动的更多和更高阶模态信息。本文利用结构损伤前和损伤后的二次协方差(CoC)矩阵参数的变化比,对只基于振动输出的、环境振动下的结构进行损伤识别。对一个七层框架结构模型进行了数值模拟,首先对不同噪声程度、不同损伤位置和程度的损伤结构进行损伤定位,再结合模型修正法,对结构损伤程度进行识别,展示了该方法的有效性。  相似文献   

15.
针对滚动直线导轨副精度保持性检测要求,提出了一种基于激光位移传感器测距的滚动直线导轨副运动精度在线检测方法。根据相对运动定理,该方法将4个激光位移传感器在线测量的滑块相对导轨基准的距离变化量转化成导轨平行度和滑块偏转角的变化量。通过滚动直线导轨副精度保持性测试方法,在线测量滚动直线导轨副在实际运行过程中的精度损失量,并与滚动直线导轨副的离线数据对比,有效验证了测试原理的可行性。最后,从多方面进行了误差分析。  相似文献   

16.
针对自动平衡装置可在线调整转子-轴承系统不平衡状态、提高设备工作效率、延长设备使用周期,通过分析国内外已有液体式在线自动平衡装置,认为注液式、释液式及连续注排液式三种平衡装置均因注排液过程存在诸多缺陷。液体转移式平衡装置在平衡过程中无需注液、排液,可从根本上避免三种结构因注、排液造成的缺陷,是一种理想结构。在保持注液式平衡装置结构简单、旋转部分无可动部件等优点前提下研究开发实用的液体转移式平衡装置,是液体式平衡装置极具前途的发展方向。  相似文献   

17.
为了研究运动副间隙对涡旋压缩机动平衡的影响,根据涡旋压缩机机构运动副间隙特点,采用非线性等效弹簧阻尼模型和Coulomb摩擦模型建立考虑摩擦作用的运动副间隙接触碰撞模型,并将其嵌入到ADAMS动力学仿真软件中,建立了含运动副间隙的涡旋压缩机动力学模型,针对小轴防自转机构、间隙大小和间隙数目三种情况,进行了动力学仿真。仿真结果表明:小轴防自转机构、间隙大小和间隙数目对涡旋压缩机的动平衡有显著影响,为合理选用轴承游隙提供了参考,并为提高涡旋压缩机的动力特性提供了理论依据。  相似文献   

18.
在高耸结构风振控制中,由于忽略控制系统与结构振动的相互作用(CSI),造成实际模型与理论模型存在差异,往往造成实际控制效果与理论控制效果不一致,导致控制效果不佳。本文以某电视塔为对象,将CSI 效应考虑在高耸结构模型中,建立了考虑CSI效应的动力特性模型,并与不考虑CSI效应的理想模型进行了对比分析。基于结构动力特性模型,分析了在控制算法中,考虑与不考虑CSI效应对控制效果的影响。为高耸结构ATMD风振控制提供相关的工程建议。  相似文献   

19.
磁流变(Magneto-rheological简称MR)减振器在运行过程中,会出现阻尼力随温度升高而下降的现象,为了在不同温度下都能输出足够的阻尼力,在结构设计时考虑温度因素至关重要。为此,本文引入了评价系数,对较高温度下MR减振器是否有能力能够输出足够的阻尼力进行衡量,并与MR减振器的最大阻尼力和动态范围作为优化目标。利用有限元方法获得了工作区域的磁感应强度,并采用响应面法建立二阶预测模型描述了磁感应强度与结构参数之间的非线性关系;结合非支配遗传算法(Non-dominated sorting genetic algorithm II,NSGA II)对MR减振器的进行了多目标优化设计,根据优化结果制造了磁流变减振器,并进行了试验测试,验证了设计方案的有效性。  相似文献   

20.
为建立锈蚀钢筋混凝土构件恢复力模型,本文通过对6个锈蚀钢筋混凝土受弯构件低周反复荷载试验,得到不同锈蚀程度的各试件的滞回曲线及骨架曲线,分析了钢筋锈蚀对试件抗震性能的影响。根据试验成果,结合钢筋锈蚀引起结构破坏形态的改变,综合考虑钢筋锈蚀后引起结构截面几何损伤、钢筋和混凝土力学性能降低、粘结滑移性能劣化以及结构刚度退化等各种耐久性损伤因素,并考虑箍筋锈蚀引起结构延性的影响,提出了锈蚀钢筋混凝土构件基于地震损伤的恢复力模型的确定方法。通过与试验进行对比分析表明模型描绘的骨架曲线和滞回曲线与试验结果总体吻合较好,所描述的现象与试验一致,该恢复力模型可在损伤钢筋混凝土结构地震反应分析中采用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号