共查询到19条相似文献,搜索用时 46 毫秒
1.
采用无人机测风手段实测获得某沿海风电场的风场特征,将所测量的风场参数应用到后续数值模拟中。以某2 MW风力机叶片全尺寸模型为研究对象,基于Workbench平台建立流固耦合系统进行计算,通过对比近尾流风速分布的数值模拟结果与实测结果来验证数值计算的准确性,进而计算额定风速下旋转叶片的挥舞变形和等效应力等响应。结果表明:风力机叶片的挥舞变形在0°方位角时最大,最大变形为1916.4 mm,接近静力加载试验最大挥舞工况结果 2299 mm;相同方位角下的挥舞变形沿着叶片展向呈非线性增大,0.60倍风轮半径处变形增长速度明显提高。叶片等效应力集中区位于大梁和前缘侧交界处,最大值出现在60°方位角下0.78倍风轮半径处,同时在风轮高度方向上呈非对称分布。 相似文献
2.
基于CFD及有限单元法,利用ANSYS Workbench平台的Fluent与Transient Structural模块,对NREL 5 MW风电机组复合材料叶片在极端运行阵风下的气动特性及结构力学特性进行研究。结果表明:风轮气动载荷受极端运行阵风的影响较大,极端运行阵风作用下,风力机转矩及轴向推力等随风速的变化出现较大幅值的响应且响应峰值较阵风峰值均有所提前;叶片位移随风速的变化在峰值风速的前后出现大小两个峰值;在风速达到峰值时,与均匀来流阶段相比,叶片表面应力整体增幅较大。 相似文献
3.
4.
将改进的流固耦合方法用于不同风速下风力机的载荷和响应特性研究,其准确性得到NREL数据和风力机叶片模态振动实验的验证。与传统的流固耦合方法相比,该方法减少了动网格使用数量、避免负体积网格,提高了计算稳定性,将计算时间缩短约50%。仿真结果表明,将风速由25 m/s提升至35 m/s,叶片的推力和扭矩载荷的波动振幅分别增加了6.8倍和9.8倍。同时,在叶片吸力面发现存在结构屈曲,这与台风现场叶片断裂位置接近,可能是风力机叶片结构在台风环境下的强度薄弱点,同时,在叶片吸力面发现存在结构屈曲,这与台风现场叶片断裂位置接近,是可能的风力机叶片结构在台风环境下的强度薄弱点。 相似文献
5.
风力机大型化的发展趋势对风力机自身动力学特性的要求越来越高,开展风力机模态分析对于风力机的设计至关重要。文章采用k-ωSST紊流模型和滑移网格技术,对美国国家可再生能源实验室5 MW海上风力机进行了流固耦合模态分析。结果表明,旋转风轮中各叶片变形相互影响,并与轮毂的弹性变形成为一个耦合系统,其固有频率相对于单叶片有较大幅度降低;动力刚化效应使得叶片的固有模态频率增加;考虑风轮的流固耦合效应时,风轮的自振频率要比不考虑流固耦合效应时低;整机在流固耦合作用下一阶模态值大于旋转频率,大于波浪的频率,不会发生共振。 相似文献
6.
针对风力机叶片,建立其结构动力学方程,推导分析了叶片旋转所产生的振动速度及其对来流的影响。基于BEM(Blade Element Momentum)理论,在风力机空气动力学基础上,建立了风力机的气动耦合分析模型。应用该模型,对某2MW风力机进行了计算分析,得到了叶片在额定工作风速下的振动变形、速度、加速度以及叶片沿展向的变形和载荷分布。充分考虑叶片的结构振动特性与来流风速的耦合效应,使得风力机空气动力学特性模型更加准确,对于风力机的设计和分析具有重要意义。 相似文献
7.
8.
采用ALE(Arbitrary Lagrangian-Eulerian)方法对汽轮机低压叶片与流场之间相互作用下的应力、位移进行了数值模拟,通过计算获得了流场、压力及叶片位移分布,得到应力及叶片位移随时间的变化关系,流体产生的压力波引发了叶片的振动,最大应力发生在叶片根部,最大应力值和最大周向位移随转数增加.模拟结果可对改进叶片性能及叶片材料选择提供相应参考. 相似文献
9.
10.
11.
考虑叶片和塔架的动力耦合作用,建立了5 MW风机整体结构的有限元模型,计算其在随机风速下的动响应。为分析叶片和塔架的动力耦合对风机结构动响应的影响,计算比较了刚性支撑的叶片、简化的风机和整体风机3种模型在风载下的动响应位移和应力。计算结果表明:由于叶片和塔架的耦合作用,叶片的位移响应最大增加约20%,但是塔架的位移响应最大降低了约60%。文章还分析了叶片旋转过程中方位角对塔架位移响应的影响。在叶片的一个旋转周期内,塔架的响应幅值会有较大的波动,最大响应幅值约为最小响应幅值的3倍。 相似文献
12.
由于风力机叶片所受风力来流的随机性和风力机结构的复杂性,大型风力机在随机风载荷下的动力学行为分析一直是风电行业急需解决的难题之一。利用MATLAB/Simulink对随机风速进行了模拟,通过柔性多体动力学方法建立了符合实际的风力机叶片/机舱/塔架耦合动力学方程。在随机风载荷下对目前国内1.5 MW主流风力机的叶片、塔架的动力学行为进行了实例分析,得到了10 min时序随机风载下的叶片挥舞位移、速度历程和塔架的位移、速度历程。分析结果表明,在随机风载下,风力机启动时叶片、塔架振动较为剧烈,随时间的增加叶片、塔架振动幅度逐渐减小,振动速度也呈减小趋势。该研究结果为我国风力机设计理论的完善和工程实践奠定了一定的基础。 相似文献
13.
14.
《可再生能源》2017,(9):1368-1374
考虑大型风电机组塔架叶片耦合结构主振动与内振动联合作用,针对该结构的动力学响应,利用有限元软件Solidworks建立三维结构动力学模型,结合振动的位移-应变关系及势能理论,对其进行模态分析,重点分析在脉动风载荷作用下的动力响应情况。结果表明,大型风电机组塔架-叶片耦合结构正进动最大振幅为0.12 m,振幅随着载荷的增大而逐渐增加,反进动出现间歇性振荡。塔顶相位差没有出现急剧变化现象,均值为30 rad,能够消除同步运转带来的固定相位差。塔顶水平位移变化幅度较小,最大水平位移为0.55 m。该结果为大型风电机组运转过程中振动及脉动风载荷作用下的状态监测提供参考。 相似文献
15.
《可再生能源》2017,(12):1835-1840
针对海上风力发电塔架风致响应特性,利用有限元分析软件Solidworks建立塔架叶片耦合结构模型进行模态分析,分析各个振型形成的原因及影响。结合Davenport脉动风速谱,利用双向流固耦合法,对塔架叶片耦合结构进行动力学参数变化分析,并在耦合结构作用下,对塔架及叶片进行位移变化分析。结果表明:耦合结构的第一阶振型为叶片前后弯曲,塔架无明显变化;耦合结构的第二阶振型为叶片垂直摆振,与扭转变形相耦合,塔架最大水平位移为0.58 m,塔架的水平位移无规则变化,变化幅度较大;耦合结构的第三阶振型为叶片俯仰挥舞,与叶片弯曲振型相耦合;塔架叶片耦合后的叶尖位移偏移量呈脉动性变化,塔架的惯性矩较小。该结果为海上风力发电塔架运行过程中动力学参数的变化及状态监测提供参考。 相似文献
16.
17.
为了研究截面翘曲对大型风力机叶片弯扭耦合特性的影响,分别建立考虑翘曲效应和不考虑翘曲效应的梁模型,并对叶根截面、翼型截面特性进行了计算,表明考虑翘曲效应的梁模型在计算叶片截面刚度时得到的结果更准确。采用考虑翘曲效应的方法计算了5 MW风力机叶片的截面刚度,分析了叶片梁帽铺层角度对风力机叶片弯扭耦合特性的影响。结果表明,无论是否考虑翘曲效应,获得最大弯扭耦合特性的梁帽铺层角度都为20°;在同样的梁帽铺层角度下,翘曲效应对叶片不同部位(特别是在翼型过渡区域及气动翼型区域)的弯扭耦合系数影响很大。 相似文献
18.
19.
文章针对在多载荷耦合作用下的大型风电机组塔架结构动力学参数变化的问题,根据柔性理论在耦合结构中的应用,建立了三维结构动力学模型。利用模态分析法,进行了振动特性研究。利用Solidworks模块化的流体分析嵌入技术进行了多载荷动力学分析。通过风与雨水载荷的耦合作用,结合基本控制方程,分析了塔架的振动位移变化情况。结果表明:振动特性中,最大振幅为0.37 m;在风与雨水耦合作用下,塔架振动位移变化幅值较大,最大值为1.22 m。该结果为塔架在风雨耦合载荷中的动力响应提供参考数据,从而为风电机组运行的稳定性提供一定参考。 相似文献