共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
提出了一种新的非平稳信号处理方法——快速自适应局部均值分解(Fast and Adaptive Local Mean Decomposition,FALMD)。采用顺序统计滤波器求取信号上下包络线的均值来获得局部均值函数及包络估计函数,然后将信号分解为若干乘积函数(Product Function,PF)分量及一个残余分量。该算法一方面改变了局部均值分解(Local Mean Decomposition,LMD)严格的终止条件,提高了运算速率,另一方面减少了对极值点的依赖,在一定程度上抑制了端点效应。仿真信号和实验信号分析证明了该方法在非平稳信号自适应分解中的有效性,成功地提取出了滚动轴承的故障特征。 相似文献
3.
局部均值分解(Local Mean Decomposition,简称LMD)将复杂的多分量信号自适应地分解为有限个乘积函数(PF)的和,在计算了各个分量的瞬时幅值(IA)和瞬时频率(IF)后,可以计算出基于LMD的边际谱。针对直接法求取瞬时频率存在端点误差大问题,提出了一种改进的直接求取瞬时频率的方法;提出了基于LMD的边际谱的滚动轴承故障诊断方法,将该方法应用于实际滚动轴承故障诊断中,结果表明该方法能有效地提取出滚动轴承的故障特征频率,从而确定故障部位。 相似文献
4.
完备总体平均局部特征尺度分解及其在转子故障诊断中的应用 总被引:1,自引:0,他引:1
作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IMF分量定义等。针对此,提出了一种完备的总体平均局部特征尺度分解(CELCD),并通过仿真信号将CELCD方法与CEEMD进行了对比,结果表明CELCD能够有效抑制LCD模态混淆,而且在抑制伪分量的产生,提高正交性和分量的精确性等方面具有一定的优越性。最后论文将CELCD方法应用于转子碰摩故障的诊断,结果表明了方法的有效性。 相似文献
5.
提出了一种基于部分集成局部特征尺度分解(Partly ensemble local characteristic-scale decomposition,PELCD)、拉普拉斯分值(Laplacian score,LS)特征选择和基于变量预测模型模式分类(Variable predictive model based class discrimination,VPMCD)的滚动轴承故障诊断模型。PELCD是新提出的一种基于噪声辅助数据分析方法,克服了局部特征尺度分解的模态混淆问题,与传统的基于噪声辅助数据分析方法相比有一定的优越性,论文将其应用于滚动轴承振动信号的预处理。之后提取振动信号PELCD分量的时域和频域统计特征及振动信号的时频联合域特征;同时为了降低特征向量维数,提高诊断效率,采用LS优化特征向量。再将优化的特征向量输入到VPMCD分类器进行训练和测试。滚动轴承实验数据分析结果表明该模型能够有效地诊断故障程度和故障类型。 相似文献
6.
针对水泵电机轴承故障振动信号噪声大和非平稳性的特点,提出了基于经验模态分解的诊断方法;通过对原始信号进行经验模态分解,得到包含故障特征的固有模态分量,从而可以提取出故障频率.该方法应用于外圈、内圈和滚动体故障诊断,取得了很好效果. 相似文献
7.
8.
一种新的非平稳信号分析方法——局部特征尺度分解法 总被引:5,自引:0,他引:5
在定义瞬时频率具有物理意义的内禀尺度分量(Intrinsic scale component,简称ISC)的基础上,提出了一种新的非平稳信号分析方法——局部特征尺度分解方法(Local characteristic-scale decomposition,简称LCD),该方法能够自适应地将一个复杂信号分解为若干个瞬时频率具有物理意义的内禀尺度分量之和.首先对LCD方法的原理进行了分析,然后给出了采用LCD对信号进行分解的详细步骤,最后采用仿真信号对LCD和经验模态分解(Em-pirical mode decomposition,简称EMD)方法进行了对比分析,结果表明了LCD方法的有效性及在端点效应、迭代次数和分解时间等方面都优于EMD分解方法. 相似文献
9.
提出了一种基于局部特征尺度分解与形态学分形维数的滚动轴承故障诊断方法。首先采用局部特征尺度分解方法将机械故障信号分解为若干个内禀尺度分量,然后利用形态学分形维数计算包含故障特征分量的分形维数,将得到的分形维数作为特征量判别信号故障的状态,实验结果表明基于局部特征尺度分解与形态学分形维数的故障诊断方法能够有效识别滚动轴承的内圈故障、外圈故障、滚动体故障和正常状态,实现滚动轴承故障诊断。 相似文献
10.
基于局部特征尺度分解和核最近邻凸包分类算法的滚动轴承故障诊断方法 总被引:1,自引:0,他引:1
提出了一种基于局部特征尺度分解(Local characteristic-scale decomposition,LCD)和核最近邻凸包(Kernelnearest neighbor convex hull,KNNCH)分类算法的滚动轴承故障诊断方法。采用LCD方法对滚动轴承原始振动信号进行分解得到若干内禀尺度分量(Intrinsic scale component,ISC),然后将这些ISC分量组成初始特征向量矩阵,再对该矩阵进行奇异值分解,提取奇异值作为故障特征向量并输入到KNNCH分类器,根据其输出结果来判断滚动轴承的工作状态和故障类型。LCD方法是一种新的自适应时频分析方法,非常适用于非平稳信号的处理,而KNNCH算法是一种基于核函数方法,并将凸包估计与最近邻分类思想相融合的模式识别算法,可直接应用于多类问题且需优化的参数只有核参数。实验分析结果表明,所提出的方法能有效地提取滚动轴承故障特征信息,而且在小样本的情况下仍能准确地对滚动轴承的工作状态和故障类型进行分类。同时,与支持向量机(Support vec-tor machine,SVM)算法的对比分析结果表明,KNNCH算法的分类性能的稳定性要高于SVM算法。 相似文献
11.
针对旋转机械复合故障振动信号的非平稳特征,开展一种基于局部均值分解(local mean decomposition, LMD)的旋转机械复合故障诊断方法研究。该方法首先通过局部均值分解方法将振动信号分解为若干个PF分量(product function)和一个残余分量之和,然后通过计算各PF分量与原始复合故障信号的相关系数来确定包含故障特征信息的主要成分;最后针对主要成分中的低频分量进行频谱分析从而提取轴的故障特征。针对主要成分中的高频分量采用包络谱分析提取调制故障特征,即提取轴承故障特征。对齿轮箱的轴承、轴复合故障振动信号的分析结果表明了该方法的有效性和可行性。 相似文献
12.
基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用 总被引:6,自引:5,他引:6
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(EmpiricalModeDecomposition,简称EMD)和奇异值分解技术的滚动轴承故障诊断方法。该方法首先采用EMD方法将滚动轴承振动信号分解为多个平稳的内禀分量(IntrinsicModefunction,简称IMF)之和,并形成初始特征向量矩阵。然后对初始特征向量矩阵进行奇异值分解得到矩阵的奇异值,将其作为滚动轴承振动信号的故障特征向量,并输入神经网络来识别滚动轴承的工作状态和故障类型。实验分析结果表明,本文方法能有效地应用于滚动轴承故障诊断。 相似文献
13.
基于时—能密度分析的滚动轴承故障诊断 总被引:3,自引:1,他引:2
根据滚动轴承局部故障振动信号的特征,提出了基于小波变换的时-能密度分析的新方法。轴承旋转元件通过故障部位产生的脉冲力的频率决定了模态频率带信号能量随时间的分布情况。利用小波基将滚动轴承故障振动信号变换到时间-尺度域,对模态频率区间的时-能密度作谱分析,不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障部位。 相似文献
14.
15.
基于小波系数包络谱的滚动轴承故障诊断 总被引:25,自引:0,他引:25
提出了基于正交小波变换诊断滚动轴承故障的新方法,利用正交小波基将滚动轴承故障振动信号变换到时间-尺度域,对高频段尺度域的小波系数进行包络细化谱分析,不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障模式 相似文献
16.
17.
基于EMD与神经网络的滚动轴承故障诊断方法 总被引:27,自引:17,他引:27
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)和神经网络的滚动轴承故障诊断方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic Mode function,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量进行进一步分析,由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,因而可从各IMF分量中提取能量特征参数作为神经网络的输入参数来识别滚动轴承的故障类型。对滚动轴承的正常状态、内圈故障和外圈故障信号的分析结果表明,以EMD为预处理器提取各频带能量作为特征参数的神经网络诊断方法比以小波包分析为预处理器的神经网络诊断方法有更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类型。 相似文献
18.
提出了一种基于局部均值分解多尺度模糊熵和灰色相似关联度相结合的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数,并从中选取包含主要故障信息的PF分量计算多尺度模糊熵作为特征向量,通过计算待识别样本与标准故障模式的灰色相似关联度,对滚动轴承故障类型和损伤程度进行判断。将该方法与LMD模糊熵和灰色相似关联度相结合的方法进行了对比,实验表明,基于LMD多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断方法,能够有效地识别滚动轴承运行状态,实现对滚动轴承的故障诊断。 相似文献