首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
螺旋桨推进轴系与船体艉部耦合振动是制约船体减振降噪的重要因素,研究其成因机制和影响因素对于识别和有效控制船体艉部振动和噪声具有重要意义。故从轴系运行状态着手,基于有限元转子动力学理论,对轴系-基座-壳体耦合振动影响因素如轴系运行工况、校中状态及激振力等进行分析。在直线校中状态下,选定轴系四种运行工况,运用雷诺方程计算各工况下支撑轴承压力分布及八动力特性参数,引入轴承润滑油膜和水膜刚度和阻尼矩阵,将各支撑轴承离散成多点支撑,在此基础上建立轴系-基座-壳体系统有限元模型,计算多激励下系统动力响应,采用有限元功率流分析各工况下支撑轴承传递特性对系统耦合振动的影响。结果表明,不同工况下轴承支撑特性会导致系统耦合振动特性不同,经轴系传递到壳体上的功率流也会产生相应变化,最终将会引起不同的辐射噪声。  相似文献   

2.
徐野  熊鹰  黄政 《振动与冲击》2020,39(2):86-91
为真实模拟壳体噪声的激励源特性,建立螺旋桨-轴系-壳体耦合系统有限元模型,以CFD计算得到的螺旋桨非定常载荷作为激励源,采用模态叠加法计算耦合系统强迫振动响应;分别以桨叶表面偶极子声源和耦合系统表面振速作为边界条件,采用声学直接边界元法计算螺旋桨直接辐射噪声和耦合系统振动噪声。数值计算结果表明:两种噪声的声压级都随螺旋桨转速的增加而增大,其中振动噪声增幅较小;耦合系统振动噪声声压级随轴承刚度的增加而增大;两种噪声的声压级在量级上较为接近,在频谱及声压分布上具有各自的特征,在预报耦合系统水下辐射噪声时应综合考虑两种噪声的影响。  相似文献   

3.
针对螺旋桨非定常激励力经由推进轴系激励艇体结构从而诱发辐射噪声问题,提出一种轴系纵向振动主动控制方法,将纵振控制器对称安装于推力轴承座上,通过反馈控制抑制轴承座振动。对螺旋桨-轴系-艇体耦合系统进行振动建模、控制和声辐射仿真分析,结果表明由纵向激励引起的艇体振动和辐射噪声能够得到抑制。为验证纵振控制器效果,在推进轴系试验台上进行试验验证,结果表明主动控制能够有效抑制推力轴承基座的纵向振动。  相似文献   

4.
康伟  张振果  谌勇 《振动与冲击》2020,39(8):208-214
为考虑螺旋桨自身弹性对桨-轴系统振动特性的影响,建立了一套基于Timoshenko梁理论的解析方法。将螺旋桨、轴系均用Timoshenko梁建模,结合桨叶与轴系连接处的协调条件及其边界条件,给出系统横向、纵向自由振动的控制方程;在同有限元结果对比表明本方法具有良好精度基础上,分析了桨叶弹性对系统模态的影响及桨-轴系统的力传递特性。研究表明:桨-轴系统的模态振型中螺旋桨叶片和轴系的弹性变形同时发生且相互影响,叶片弯曲模态会加剧轴系振动;作用于桨叶的激励引起的桨-轴系统轴承处的纵向传递力被桨叶弯曲和轴系纵振两阶模态显著放大,而横向传递力主要由桨叶及轴系的弯曲模态控制。  相似文献   

5.
为减小螺旋桨激励下推进轴系的横向振动传递,提出了一种基于主动支承的控制方法。该方法在艉轴承处按垂直、水平两个正交方向布置连接艉轴承与壳体的主动支承,支承内部安装电磁作动器并采用直接速度反馈,抑制螺旋桨横向激励通过艉轴承支承向壳体传递,降低螺旋桨横向脉动力诱发的壳体表面振动与声辐射。建立了桨轴系-主动支承-壳体的耦合动力学模型与壳体声辐射计算模型,通过仿真揭示了主动支承对螺旋桨激励下的壳体表面声功率具有明显的抑制效果,还给出了原理性实验验证,结果表明正交主动支承能够衰减轴端激励引起的壳体表面法向振速。  相似文献   

6.
针对某轴系-艇体缩比试验模型,首先进行动力学建模,并利用试验数据对模型参数进行修正。在此基础上将振动模型利用直接边界元法进行进一步延伸分析,对螺旋桨纵、横激励力作用下壳体的声辐射特征进行预测,得到两种激励力下典型模态的壳体表面声压和远场声压分布特性,并从能量角度对耦合系统的声辐射特性进行分析,给出轴系-艇体耦合系统水下声辐射特性。  相似文献   

7.
根据湍流统计理论和随机振动理论,研究了一个弹性侧斜桨-轴系统的振动响应。首先将螺旋桨沿半径方向划分为许多条带,通过相关分析法计算了均匀湍流作用在螺旋桨面上的非定常力谱,得到压力谱的空间分布;然后把条带压力谱映射到每个条带的点上,根据随机振动理论求解系统的弹性振动响应,并与刚性桨的计算结果进行对比;最后通过改变系统动力学参数,分析弹性、阻尼等因素对螺旋桨随机振动响应的影响。结果表明,轴系材料越软,桨叶材料越刚硬,湍流引起的随机振动响应越小;增加系统的阻尼可以明显降低系统固有频率附近的响应。为进一步研究螺旋桨的减振降噪打下基础。  相似文献   

8.
针对船舶推进轴系提出了一种基于频响函数综合的子结构方法,考虑了轴承液膜交叉刚度的影响、螺旋桨和推进电机同时激励的工况,分析了在螺旋桨和推进电机激励下的振动响应特性。该方法将耦合系统划分为螺旋桨-轴系、轴承、高弹、推进电机、隔振器和船体子结构,通过二次频响函数综合建立了耦合系统的频响函数表达式;利用该建模方法和灵敏度分析建立了以均方传递力、传递功率流为优化目标的优化模型,针对轴承、隔振器和高弹的刚度参数进行优化。结果表明:基于频响函数综合的子结构建模和优化方法效率高,适合于对支撑结构刚度参数进行优化;对一模型的匹配优化结果表明,轴承和隔振器刚度减小、高弹性联轴器的刚度增加对减小振动传递有利。  相似文献   

9.
螺旋桨水弹性问题研究对于船舶减振降噪及水弹性力学发展具有重大意义。该研究围绕螺旋桨流体激励特性开展流固耦合机理与计算方法研究。提出了一种基于时域面元计算刚体桨非均匀流中旋转所受流体力、频域面元计算弹性桨均匀流中振动所受流体力、有限元求解结构动力学的弹性桨双向流固耦合非定常水动力预报算法——时域/频域面元-有限元法,可克服频域面元-有限元法非线性伯努利方程难处理及时域面元-有限元法低效率问题。研究表明:桨弹性效应特别是流体附加阻尼在桨-轴-船系统减振降噪设计中应予以足够重视;空间不均匀来流下弹性桨轴承力计算可在平衡位置表面施加不可穿透条件。该方法和结果可为低噪声桨-轴-船系统设计提供必要的理论参考。  相似文献   

10.
提出桨-轴系-船体耦合系统振动响应的频响函数子结构综合建模方法.搭建基于减振降噪设计的桨-轴系-船体耦合振动测试的实尺度试验台,开展轴系运转状态下的振动传递测试.利用测试结果,验证频响函数子结构综合建模方法的最大幅值误差在主要频率点处不大于2.0 dB;并对结合数值模拟对测试得到的传递特性进行分析,得到结论为:低频主要...  相似文献   

11.
水润滑轴承摩擦诱导的螺旋桨推进轴系振动是造成舰艇艉部高频振动噪声的重要诱因。针对摩擦诱导的螺旋桨推进轴系非线性自激振动特性进行研究。基于拉格朗日方程和模态叠加方法建立摩擦激励下螺旋桨推进轴系的非线性动力学方程,轴承—轴颈的动摩擦特性采用速度依赖型的Stribeck摩擦模型进行描述,同时考虑非线性摩擦、扭转振动和横向振动的耦合作用。运用Newmark-β和Newton-Raphson迭代相结合的方法求解系统非线性动力学响应。分析结果表明,在摩擦激励自激振动作用下系统动力学特性均被激发,系统的弯扭耦合振动特性易诱发螺旋桨推进轴系产生摩擦自激振动现象。  相似文献   

12.
推力轴承基座是螺旋桨纵向激励向船体传递的主要路径。针对推进轴系纵振控制问题,建立螺旋桨-轴系-推力轴承基座耦合振动模型,采用四端参数法求解模型干扰通道与控制通道的频响函数,并通过数值仿真分析主动控制效果。结果表明,在推力轴承基座上施加纵向控制力,自适应控制策略能使推力轴承基座纵向振动得到有效控制。将作动器对称安装于推力轴承基座,通过作动器输出力抵消干扰激励的影响。实验结果表明,控制方法能有效抑制推力轴承基座的纵向振动,100 Hz内的功率谱峰值下降90%左右。  相似文献   

13.
螺旋桨在艇体艉部不均匀伴流场中旋转产生的脉动推力激励起推进轴系纵向振动,振动经推力轴承基座传递至艇体,引起艇体水下低频辐射噪声。通过建立推进轴系、推力轴承基座和艇体耦合结构模型,分析推进轴系─艇体的耦合振动模态,结果显示,艇体弹性支撑边界条件对推进轴系的纵向振动特性有一定影响。采用基于模态叠加法的有限元结合边界元方法分析推进轴系纵向振动激励下的艇体水下辐射声场,分析表明,艇体第1阶纵向振动模态是参与艇体水下声辐射的主模态。进一步在推力轴承及其基座间安装动力吸振器以减小推进轴系纵向振动向艇体的传递,使艇体水下辐射噪声得到一定程度上的控制。  相似文献   

14.
提出一种基于主动艉支承的推进轴系横向振动传递控制方法,以抑制水下航行器的低频声辐射。该方法将传统的艉轴承支承方式由面支承改为点支承,通过六个主动作动器抑制螺旋桨横向激励力经由艉轴承向壳体的传递。建立包含主动艉支承的螺旋桨-推进轴系-壳体耦合系统动力学模型,分析系统振动传递特性及控制策略可行性;结合自适应控制算法,计算螺旋桨横向激励下的振动传递抑制效果。构建包含主动艉支承的螺旋桨-推进轴系-壳体实验系统,进一步验证控制方法的有效性。仿真与实验结果均表明主动艉支承对于螺旋桨横向激励力经由艉轴承向壳体的传递具有明显抑制效果,可有效降低壳体表面法向振动。  相似文献   

15.
潜艇轴系向艇体传递激振力的过程是轴、艇耦合作用过程,为解决工程中需采用简化等效轴-艇模型进行轴、艇激振力传递分析的问题,针对潜艇模型进行了螺旋桨轴向激振力工况下的轴、艇耦合特性与机理研究:在不改变耦合状态的情况下,采取子系统分析方法,将轴-艇耦合系统分解为轴系子系统和艇体子系统,利用力模式分解技术研究了轴系向艇体传递激振力的模式,研究了轴、艇耦合状态,采取子模态分析技术分析了艇体自由模态与轴系的耦合关系。数值研究结果表明:轴系对激振力的传递具有多模式特征,各轴承对激振力传递的贡献程度由激振频段决定,不同激振频段的轴、艇耦合强度不同,参与轴、艇强耦合的艇体模态数量和类型也不同。相关定量结果可为工程中轴-艇模型化分析提供技术支撑。  相似文献   

16.
基于动力吸振器的潜艇推进轴系轴向减振研究   总被引:2,自引:1,他引:2       下载免费PDF全文
螺旋桨脉动推力经推进轴、推力轴承及其基座传递到壳体,是潜艇壳体产生低频轴向振动与声辐射的一个重要因素。本文基于四端参数法建立了综合考虑推进轴系和壳体弹性的潜艇轴向振动力学模型,以轴系传递到壳体的纵振功率流为评价指标研究了轴系的轴向振动传递特性,详细讨论了用动力吸振器实现轴系轴向减振的设计方法。研究结果表明,螺旋桨脉动推力会在轴系各阶纵振频率附近频段激励起轴壳耦合的轴向共振,显著增加轴系到壳体的能量传递。用动力吸振器可以有效抑制轴系各阶轴向共振频率附近的轴-壳共振,而对其它频段的轴壳轴向共振则效果不佳。  相似文献   

17.
船舶的低频振动与水下辐射噪声是船舶最主要的噪声源,该振动噪声频谱通常分布在80 Hz以下的频段内,该频段内噪声源主要由主机激励和螺旋桨激励两部分构成。利用有限元法,基于某30 000 DWT型散货轮实际船型的尺寸和主机的安装位置建立带有主机、轴系、螺旋桨的船体有限元分析模型,进行模态分析,得到整船的固有特性。并在此基础上,分别计算主机机座垂向激励和螺旋桨轴向、垂向激励下整船的振动传递函数,获取两激励源引起船体振动的差异特性,为船舶动力系统设计与船体振动噪声控制提供参考。  相似文献   

18.
针对suboff艇后泵喷推进器分布式脉动压力激励下的泵喷-轴系-艇体耦合系统振动声辐射响应计算和特性分析开展研究。建立计算流体动力学(computational fluid dynamics, CFD)模型利用剪切应力输运(shear stress transfer, SST)k-ω模型进行suboff艇后泵喷推进器表面脉动压力的计算,利用耦合有限元法(finite element method, FEM)建立泵喷-轴系-艇体耦合系统动力学模型,结合自编径向基函数插值程序获得表面脉动压力在泵喷结构湿表面的空间分布,利用边界元法(boundary element method, BEM)计算泵喷-轴系-艇体耦合系统的声辐射特性。对泵喷-轴系-艇体的耦合模态特性、传递力、辐射声功率和指向性等开展分析。结果表明:声辐射以转子表面脉动压力的贡献为主;二阶轴频以上,纵向脉动压力的贡献占优;泵喷激励下,振动声辐射主要特征频率包括激励力特征线谱、艇体的纵振模态、转子同相振动模态(呼吸模态)、转子-轴系一阶纵振模态等;导管和定子脉动压力激励下振动声辐射响应峰值出现在叶频(blade passing frequency, BPF)和2倍叶频处,量级和转子表面脉动压力激励处于同一量级,但其和转子表面脉动压力共同作用时,由于相位相互抵消,响应幅值并没有显著增大。研究结果可为泵喷-轴系-艇体耦合系统振动声辐射的控制提供指导。  相似文献   

19.
舰船推进轴系的抗冲击性能是舰船生命力的主要影响因素之一。为了分析推进轴系在转动状态下的抗冲击性能,将其视为一个低速的转子系统,采用有限元法建立推进轴系受横向冲击载荷的计算模型,并用Newmark法对模型进行数值求解。通过实例仿真计算,研究推进轴系冲击响应特征及转速的影响。计算结果表明,转轴的回转效应使其在垂直和水平方向的弯曲振动相互耦合,其影响等效为阻尼效应,与静态轴系冲击响应相比,当系统阻尼较小时,转速对大转动惯量部件附近位置的响应影响较大,不可忽略;但当系统阻尼较大时,转速的影响较小。轴系的最大冲击位移出现在距离较远的相邻两轴承间的轴中部;轴的弯曲变形能有效地吸收冲击能量,故螺旋桨的冲击加速度响应不大。  相似文献   

20.
吴思远  黎胜 《振动与冲击》2014,33(12):207-210
螺旋桨噪声是舰船水下噪声的重要组成部分,它会影响舰船的隐身性能。螺旋桨水下噪声可分为流体动力噪声和叶片振动辐射噪声。本文计算研究了螺旋桨叶片振动辐射噪声,首先采用CFD方法对螺旋桨敞水特征进行模拟,提取螺旋桨表面的压力波动作为外部载荷;再利用有限元方法对螺旋桨进行振动响应分析;最后以振动响应作为声辐射边界条件,利用边界元方法计算了螺旋桨的振动辐射噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号