首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a moving-object database system that supports continuous queries (CQ), an important problem is to keep the location data consistent with the actual locations of the entities being monitored, in order to produce correct query results. This goal is often difficult to achieve due to limited network resources. However, if an object is not required by any query, its value need not be refreshed. Based on this observation, we redefine the notion of temporal consistency of data items with respect to the query result, where only data items that are relevant to the CQs need to be fresh. To exploit this correctness definition, we develop an adaptive time-based update technique called query-result update (QRU). The advantage of this technique is that it identifies objects with different levels of significance to the correctness of query results. Locations of objects that have more impact to the query result are acquired more frequently than the ones that do not.  相似文献   

2.
Given two sets of moving objects with nonzero extents, the continuous intersection join query reports every pair of intersecting objects, one from each of the two moving object sets, for every timestamp. This type of queries is important for a number of applications, e.g., in the multi-billion dollar computer game industry, massively multiplayer online games like World of Warcraft need to monitor the intersection among players’ attack ranges and render players’ interaction in real time. The computational cost of a straightforward algorithm or an algorithm adapted from another query type is prohibitive, and answering the query in real time poses a great challenge. Those algorithms compute the query answer for either too long or too short a time interval, which results in either a very large computation cost per answer update or too frequent answer updates, respectively. This observation motivates us to optimize the query processing in the time dimension. In this study, we achieve this optimization by introducing the new concept of time-constrained (TC) processing. Further, TC processing enables a set of effective improvement techniques on traditional intersection join algorithms. Finally, we provide a method to find the optimal value for an important parameter required in our technique, the maximum update interval. As a result, we achieve a highly optimized algorithm for processing continuous intersection join queries on moving objects. With a thorough experimental study, we show that our algorithm outperforms the best adapted existing solution by several orders of magnitude. We also validate the accuracy of our cost model and its effectiveness in optimizing the performance.  相似文献   

3.
Moving object databases are required to support different types of queries with a large number of moving objects. New types of queries namely directions and velocity queries (DV queries), are to be supported and covered. The TPR-tree and its successors are efficient indexes that support spatio-temporal queries for moving objects. However, neither of them support the new DV queries. In this paper, we propose a new index for moving objects based on the TPR*-tree, named Direction and Velocity of TPR*-tree or DV-TPR*-tree, in order to build data a structure based on the spatial, direction and velocity domains. DV-TPR*-tree obtains an ideal distribution that supports and fulfils the new query types (DV queries). Extensive performance studies show that the query performance of DV-TPR*-tree outperforms the TPR-tree and its successors.  相似文献   

4.
Nearest and reverse nearest neighbor queries for moving objects   总被引:4,自引:0,他引:4  
With the continued proliferation of wireless communications and advances in positioning technologies, algorithms for efficiently answering queries about large populations of moving objects are gaining interest. This paper proposes algorithms for k nearest and reverse k nearest neighbor queries on the current and anticipated future positions of points moving continuously in the plane. The former type of query returns k objects nearest to a query object for each time point during a time interval, while the latter returns the objects that have a specified query object as one of their k closest neighbors, again for each time point during a time interval. In addition, algorithms for so-called persistent and continuous variants of these queries are provided. The algorithms are based on the indexing of object positions represented as linear functions of time. The results of empirical performance experiments are reported.  相似文献   

5.
Recent research has focused on Continuous K Nearest Neighbor (CKNN) queries in road networks, where the queries and the data objects are moving. Most existing approaches assume the fixed velocity of moving objects. The release of fixed moving velocity makes the query process slowly due to the significant repetitive query cost. In this paper, we study CKNN queries over moving objects with uncertain velocity in road networks. A Distance Interval Model (DIM) is designed to calculate the minimal and maximal road network distances between moving objects and query point. Furthermore, we propose a novel Possibility-based Vague KNN (PVKNN) algorithm to process the query efficiently, which determines the CKNN query results with possibility within each division time subinterval of given time interval by applying the vague set theory. In the PVKNN algorithm, the query efficiency can be improved significantly with the pruning, distilling and possibility-ranking phases. With these phases, the objects candidates are scaled down and the given time interval is divided into subintervals to reduce the repetitive query cost. In addition, an index structure TPRuv-Tree is designed to efficiently index moving objects with uncertain velocity in road network by involving edge connection and moving objects information. Experiments with simulation and comparison show that significant improvement in the performance of efficiency can be achieved with our proposed algorithms.  相似文献   

6.
Tianyang  Dong  Lulu  Yuan  Qiang  Cheng  Bin  Cao  Jing  Fan 《World Wide Web》2019,22(4):1765-1797

Recently more and more people focus on k-nearest neighbor (KNN) query processing over moving objects in road networks, e.g., taxi hailing and ride sharing. However, as far as we know, the existing k-nearest neighbor (KNN) queries take distance as the major criteria for nearest neighbor objects, even without taking direction into consideration. The main issue with existing methods is that moving objects change their locations and directions frequently over time, so the information updates cannot be processed in time and they run the risk of retrieving the incorrect KNN results. They may fail to meet users’ needs in certain scenarios, especially in the case of querying k-nearest neighbors for moving objects in a road network. In order to find the top k-nearest objects moving toward a query point, this paper presents a novel algorithm for direction-aware KNN (DAKNN) queries for moving objects in a road network. In this method, R-tree and simple grid are firstly used as the underlying index structure, where the R-tree is used for indexing the static road network and the simple grid is used for indexing the moving objects. Then, it introduces the notion of “azimuth” to represent the moving direction of objects in a road network, and presents a novel local network expansion method to quickly judge the direction of the moving objects. By considering whether a moving object is moving farther away from or getting closer to a query point, the object that is definitely not in the KNN result set is effectively excluded. Thus, we can reduce the communication cost, meanwhile simplify the computation of moving direction between moving objects and query point. Comprehensive experiments are conducted and the results show that our algorithm can achieve real-time and efficient queries in retrieving objects moving toward query point in a road network.

  相似文献   

7.
A number of indexing techniques have been proposed in recent times for optimizing the queries on XML and other semi-structured data models. Most of the semi-structured models use tree-like structures and query languages (XPath, XQuery, etc.) which make use of regular path expressions to optimize the query processing. In this paper, we propose two algorithms called Entry-point algorithm (EPA) and Two-point Entry algorithms that exploit different types of indices to efficiently process XPath queries. We discuss and compare two approaches namely, Root-first and Bottom-first in implementing the EPA. We present the experimental results of the algorithms using XML benchmark queries and data and compare the results with that of traditional methods of query processing with and without the use of indexes, and ToXin indexing approach. Our algorithms show improved performance results than the traditional methods and Toxin indexing approach.  相似文献   

8.
Zhou  Ying  Li  Hui  Li  Dan  Wang  Meng  Cui  Jiangtao 《Distributed and Parallel Databases》2021,39(3):607-636
Distributed and Parallel Databases - In this paper we propose and study the problem of k-Collective influential facility placement over moving object. Specifically, given a set of candidate...  相似文献   

9.
There have been many studies on management of moving objects recently. Most of them try to optimize the performance of predictive window queries. However, not much attention is paid to two other important query types: the predictive range query and the predictive k nearest neighbor query. In this article, we focus on these two types of queries. The novelty of our work mainly lies in the introduction of the Transformed Minkowski Sum, which can be used to determine whether a moving bounding rectangle intersects a moving circular query region. This enables us to use the traditional tree traversal algorithms to perform range and kNN searches. We theoretically show that our algorithms based on the Transformed Minkowski Sum are optimal in terms of the number of tree node accesses. We also experimentally verify the effectiveness of our technique and show that our algorithms outperform alternative approaches.  相似文献   

10.
We propose techniques for processing SPARQL queries over a large RDF graph in a distributed environment. We adopt a “partial evaluation and assembly” framework. Answering a SPARQL query Q is equivalent to finding subgraph matches of the query graph Q over RDF graph G. Based on properties of subgraph matching over a distributed graph, we introduce local partial match as partial answers in each fragment of RDF graph G. For assembly, we propose two methods: centralized and distributed assembly. We analyze our algorithms from both theoretically and experimentally. Extensive experiments over both real and benchmark RDF repositories of billions of triples confirm that our method is superior to the state-of-the-art methods in both the system’s performance and scalability.  相似文献   

11.
12.
Continuous Range (CR) query and Continuous K-Nearest Neighbor (CKNN) query are two important types of spatio-temporal queries. Given a time interval [t s , t e ] and a moving query object q, a CR query is to find the moving objects whose Euclidean distances to q are within a user-given distance at each time instant within [t s , t e ]. A CKNN query is to retrieve the K-Nearest Neighbors (KNNs) of this query object q at each time instant within [t s , t e ]. In this paper, we investigate how to process these spatio-temporal queries efficiently under the situation that the velocity of each object is not fixed. This uncertainty on the velocity of object inevitably results in high complexity in processing spatio-temporal queries. We will discuss the complications incurred by this uncertainty and propose two algorithms, namely the Possibility-based possible within objects searching algorithm and the Possibility-based possible KNN searching algorithm, for the CR query and the CKNN query, respectively. A Possibility-based model is designed accordingly to quantify the possibility of each object being the result of a CR query or a CKNN query. Comprehensive experiments are performed to demonstrate the effectiveness and the efficiency of the proposed approaches.  相似文献   

13.
The Multiple Time Bucket Join (MTB-join) algorithm is the state of the art for processing the continuous intersection join (CI-join) query over moving objects. It considerably outperforms alternatives, but still falls short of real-time application performance requirements for large sets of moving objects. In this paper, we achieve real-time performance for the CI-join query over large sets of moving objects by exploiting the computational power of commodity graphics processing units (GPUs). We first analyze how the main characteristics of the MTB-join algorithm make it ill suited to GPUs and identify key challenges in designing efficient GPU-based algorithms for the query. We then address these challenges by developing the multi-layered grid join (MLG-join) algorithm which has the following key features: (i) memory locality friendly indexing, (ii) no dynamic memory allocation, (iii) in-place object updates, (iv) lock-free concurrent updates, and (v) massive parallelism. These features unleash the full potential of the memory bandwidth and parallel processing of GPUs. Furthermore, we conduct a theoretical analysis which can predict the pruning power of the MLG-join algorithm given certain parameter values used in the algorithm. This allows us to select optimal parameter values. Through extensive experimental results, we show that our analysis accurately models the MLG-join algorithm’s sensitivity to parameter values. The proposed MLG-join algorithm outperforms the MTB-join algorithm, and a GPU-based nested-loops join algorithm, by up to two orders of magnitude, and achieves real-time performance for CI-join queries on large sets of moving objects.  相似文献   

14.
15.
Detecting moving objects using the rigidity constraint   总被引:1,自引:0,他引:1  
A method for visually detecting moving objects from a moving camera using point correspondences in two orthographic views is described. The method applies a simple structure-from-motion analysis and then identifies those points inconsistent with the interpretation of the scene as a single rigid object. It is effective even when the actual motion parameters cannot be recovered. Demonstrations are presented using point correspondences automatically determined from real image sequences  相似文献   

16.
An important application of machine vision systems is the recognition of known three-dimensional objects. A major difficulty arises when two or more objects project the same or similar two-dimensional image, often resulting in misclassification and degradation of system performance. The changes in images which result from the motion of objects provide a source of three-dimensional information which can greatly aid the classification process, but this three-dimensional analysis is computationally complex and subject to many sources of error. This work develops a methodology which utilizes the information derived from the apparent changes in object features over time to facilitate the recognition task, without the need to actually recover the three-dimensional structure of the objects under view. The basic approach is to generate a ``feature signature' by combining the feature measurements of the individual regions in a long sequence of images. The static information in the individual frames is analyzed along with the temporal information from the entire sequence. These techniques are particularly applicable in situations where static image processing methods cannot discriminate between ambiguous objects. Two example implementations are presented to illustrate the application of the techniques of object recognition using motion information.  相似文献   

17.
Skyline query is important in the circumstances that require the support of decision making. The existing work on skyline queries is based mainly on the assumption that the datasets are static. Querying skylines over moving objects, however, is also important and requires more attention. In this paper, we propose a framework, namely PRISMO, for processing predictive skyline queries over moving objects that not only contain spatio-temporal information, but also include non-spatial dimensions, such as other dynamic and static attributes. We present two schemes, RBBS (branch-and-bound skyline with rescanning and repacking) and TPBBS (time-parameterized branch-and-bound skyline), each with two alternative methods, to handle predictive skyline computation. The basic TPBBS is further extended to TPBBSE (TPBBS with expansion) to enhance the performance of memory space consumption and CPU time. Our schemes are flexible and thus can process point, range, and subspace predictive skyline queries. Extensive experiments show that our proposed schemes can handle predictive skyline queries effectively, and that TPBBS significantly outperforms RBBS.  相似文献   

18.
The growing need for location based services motivates the moving k nearest neighbor query (MkNN), which requires to find the k nearest neighbors of a moving query point continuously. In most existing solutions, data objects are abstracted as points. However, lots of real-world data objects, such as roads, rivers or pipelines, should be reasonably modeled as line segments or polyline segments. In this paper, we present LV*-Diagram to handle MkNN queries over line segment data objects. LV*-Diagram dynamically constructs a safe region. The query results remain unchanged if the query point is in the safe region, and hence, the computation cost of the server is greatly reduced. Experimental results show that our approach significantly outperforms the baseline method w.r.t. CPU load, I/O, and communication costs.  相似文献   

19.
Location-based services have attracted the attention of important research in the field of mobile computing. Specifically, different mechanisms have been proposed to process location-dependent queries. In the above mentioned context, it is usually assumed that the location data are expressed at a fine geographic precision. However, a different granularity may be more appropriate in certain situations. Thus, a location resolution higher than required may even be inconvenient or not understandable by the user (for example, if the user expects a city name as an answer and instead the system provides the latitude/longitude coordinates). Moreover, if the locations presented to the user need to be refreshed automatically as the objects move, it is obvious that maintaining up-to-date GPS-like geographic coordinates would be more expensive in terms of processing and communication. Unfortunately, the existing approaches assume queries whose locations are always given with maximum precision (i.e., GPS locations).In this paper, a distributed query processing approach that adapts itself to the level of the location resolution required is presented. Thus, it supports continuous location-dependent queries based on the required terminology for the locations, depending on the granularity used (e.g., GPS, cities, states, provinces, or any other predefined geographic area). For the above mentioned purpose, location granules can be defined to specify the semantics appropriate for the queries and/or the way the results should be presented. A prototype showing the functionality and benefits of the approach has been implemented and used in an extensive experimental evaluation. The proposal not only increases the flexibility and expressive power of the queries considerably but also performs efficiently.  相似文献   

20.
In this paper, we propose an efficient solution for processing continuous range spatial keyword queries over moving spatio-textual objects (namely, CRSK-mo queries). Major challenges in efficient processing of CRSK-mo queries are as follows: (i) the query range is determined based on both spatial proximity and textual similarity; thus a straightforward spatial proximity based pruning of the search space is not applicable as any object far from a query location with a high textual similarity score can still be the answer (and vice versa), (ii) frequent location updates may invalidate a query result, and thus require frequent re-computing of the result set for any object updates. To address these challenges, the key idea of our approach is to exploit the spatial and textual upper bounds between queries and objects to form safe zones (at the client-side) and buffer regions (at the server-side), and then use these bounds to quickly prune objects and queries through smart in-memory data structures. We conduct extensive experiments with a synthetic dataset that verify the effectiveness and efficiency of our proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号