首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article investigated the crystallization kinetics, melting behavior, and morphologies of poly(butylene succinate)(PBS) and its segmented copolyester poly(butylene succinate)‐block‐poly(propylene glycol)(PBSP) by means of differential scanning calorimetry, polarized light microscopy, and wide angle X‐ray diffraction. Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the Avrami equation modified by Jeziorny, and the model combining Avrami equation and Ozawa equation were employed. The results showed that the introduction of poly(propylene glycol) soft segment led to suppression of crystallization of PBS hard segment. The melting behavior of the isothermally and nonisothermally crystallized samples was also studied. Results showed that the isothermally crystallized samples exhibited two melting endotherms, whereas only one melting endotherm was shown after nonisothermal crystallization. The spherulitic morphology of PBSP and wide angle X‐ray diffraction showed that the polyether segments were excluded from the crystals and resided in between crystalline PBS lamellae and mixed with amorphous PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Poly(butylene succinate‐co‐butylene 2‐methyl succinate) (PBSMS) random copolymers were synthesized with various comonomer compositions and their crystallization behaviour and morphology were investigated by differential scanning calorimeter, small angle X‐ray scattering and polarized optical microscopy. The equilibrium melting temperature obtained by the Hoffman–Weeks plot significantly decreased with increasing comonomer concentration containing methyl side‐groups. Spherulitic growth rates were strongly dependent on comonomer concentration and were analyzed using the Lauritzen–Hoffman kinetic theory. The surface free energy (σσe) dramatically decreased with comonomer contents. From analysis of the SAXS data, the dependence of the lamellar thickness on crystallization temperature decreased with increasing comonomer concentration. © 2002 Society of Chemical Industry  相似文献   

3.
A series of novel poly[(butylene succinate)‐co‐diolisobutyl]‐[ polyhedral oligomeric silsesquioxane] (PBS‐POSS) copolyesters have been synthesized for the first time directly from diacid and diols via melting polycondensation. Both PBS and POSS segments crystallized as revealed by X‐ray diffraction, and the crystallization of PBS was found to be retarded by the incorporation of POSS into PBS chains based on differential scanning calorimetry and rheological results. Moreover, the copolyester containing 3 mol% POSS formed organogels in chloroform by the treatment of shear flow and was more thermally stable than the pristine sample, due to formation of a physically crosslinked network caused by the crystallization of POSS into crystals of larger sizes. © 2013 Society of Chemical Industry  相似文献   

4.
Polyester‐polyether segmented block copolymers of poly[(butylene succinate)‐co‐poly(butylene terephthalate)] (PBS–PBT) and poly(tetramethylene glycol) (PTMG) (Mn = 2000) with various compositions were synthesized. PBT content in the PBS was adjusted to ca. 5 mol %. Their thermal and mechanical properties were investigated. In the case of copolymer, the melting point of the PBS–PBT control was 107.8°C, and the melting point of the copolymer containing 70 wt % of PTMG was 70.1°C. Crystallinity of soft segment was 5 ∼ 17%, and that of hard segment was 42 ∼ 59%. The breaking stress of the PBS–PTMG control was 47 MPa but it decreased with increasing PTMG content. In the case of copolymer containing 70 wt % of PTMG, breaking stress was 36 MPa. Contrary to the decreasing breaking stress, breaking strain increased from 300% for PBS–PBT control to 900% for a copolymer containing 70 wt % of PTMG. The shape recovery ratios of the copolymer containing 70 wt % PTMG were almost twice of those of copolymers containing 40 wt % PTMG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2067–2075, 2001  相似文献   

5.
The melting behavior of poly(butylene terephthalate‐co‐diethylene terephthalate) and poly(butylene terephthalate‐co‐triethylene terephthalate) copolymers was investigated by differential scanning calorimetry after isothermal crystallization from the melt. Multiple endotherms were found for all the samples, and attributed to the melting and recrystallization processes. By applying the Hoffman‐Weeks' method, the equilibrium melting temperatures of the copolymers under investigation were obtained. Two distinct peaks in the crystallization exothermic curve were observed for all the samples. Both of them appeared at higher times than that of PBT, indicating that the introduction of a comonomer decreased the crystallization rate. The observed dependence of this latter on composition was explained on the basis of the content of ether–oxygen atoms in diethylene and triethylene terephthalate units, and of the different sizes of these units. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3545–3551, 2001  相似文献   

6.
Differential scanning calorimetry (DSC) was used to evaluate the thermal behavior and isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers containing 2‐methyl‐1,3‐propanediol as a comonomer unit. The addition of comonomer reduces the melting temperature and decreases the range between the glass transition and melting point. The rate of crystallization is also decreased with the addition of this comonomer. In this case it appears that the more flexible glycol group does not significantly increase crystallization rates by promoting chain folding during crystallization, as has been suggested for some other glycol‐modified PET copolyesters. The melting behavior following isothermal crystallization was examined using a Hoffman–Weeks approach, showing very good linearity for all copolymers tested, and predicted an equilibrium melting temperature (Tm0) of 280.0°C for PET homopolymer, in agreement with literature values. The remaining copolymers showed a marked decrease in Tm0 with increasing copolymer composition. The results of this study support the claim that these comonomers are excluded from the polymer crystal during growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2592–2603, 2006  相似文献   

7.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The kinetics of the isothermal crystallization process from the melt of pure poly(butylene succinate)‐co‐(butylene carbonate) (PBS‐co‐BC) and its blends with cellulose acetate butylate (CAB) (10–30 wt%) was studied by differential scanning calorimetry (DSC) and the well‐known Avrami equation. In the blends, the overall crystallization rate of PBS‐co‐BC became slower with increasing CAB content. The equilibrium melting temperature ( ) of PBS‐co‐BC decreased with increasing CAB content, which was similar to that with other miscible crystalline/amorphous polymer blends. The slower crystallization kinetics of PBS‐co‐BC in the blends was explicable in terms of a diluent effect of the CAB component. By application of Turnbull–Fisher kinetic theory for polymer–diluent blend systems, the surface free energy (σe) of pure PBS‐co‐BC and of the blends was obtained, indicating that the blend with CAB resulted in a decrease in the surface free energy of folding of PBS‐co‐BC lamellar crystals. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
In this article, isothermal crystallization, melting behaviors, and spherulitic morphologies of high‐impact multiblock copolymers, comprising of PBS as hard segment and poly(1,2‐propylene succinate) (PPSu) as soft segment with hexamethylene diisocyanate as a chain extender, were investigated. The results from differential scanning calorimetry (DSC) suggest that the two segments of multiblock copolymers are miscible in amorphous region. The crystallization kinetics were analyzed by the Avrami equation. The effect of PBS segment length as well as the introduction of PPSu segment on the crystallization kinetics and melting bebaviors of block copolymers was studied. Both crystallization rate (G) and spherulitic growth rate (g) are markedly increased with the increase of PBS segment length or decreased with the incorporation of PPSu segment. All the multiblock copolymers show the multiple melting behaviors, whose position and area depend on PBS segment length and the presence of PPSu segment. The melting peaks shift to higher temperature region with increasing PBS segment length. Spherulitic morphologies of the multiblock copolymers after being isothermally crystallized were examined by polarized optical microscopy. It is the first time to investigate the effect of one segment length on crystallization bebavior of block copolymers based on a fixed weight ratio systematically. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Copolymers of poly[2‐(dimethylamino)ethyl methacrylate]–poly(butylene succinate)–poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA–PBS–PDMAEMA, PDBD) were synthesized through a chain‐extension reaction. The thermal properties characterized using differential scanning calorimetry showed that the introduction of PDMAEMA chains slightly decreased the melting temperature of PBS. The water contact angle of PDBD copolymer films with media of various pH decreased with a decrease of pH. This should be ascribed to the conformational transition of PDMAEMA blocks from a compact coil to an expanding shape in accordance with the variation of the pH of the surroundings. The results of dynamic light scattering and scanning electron microscopy revealed that PDBD copolymers could form spherical micelles with small particle size and narrow particle size distribution. Furthermore, drug loading (loading content, ca 10%; encapsulation efficiency, ca 60%) and release experiments were conducted using doxorubicin as a hydrophobic model drug. The results of release experiments of copolymer nanomicelles showed that these micelles had pH‐responsive properties. © 2018 Society of Chemical Industry  相似文献   

11.
Poly (butylene succinate‐co‐cyclohexanedimethylene succinate) (PBCSs), which are composed of various amounts of cyclohexanedimethylene succinate (CS) with butylene succinate (BS) were synthesized via polycondensation. The composition of PBCSs was analyzed by a 1H‐nuclear magnetic resonance (1H‐NMR). Crystallization, morphology, and rheological properties of PBCSs were investigated by a polarized optical microscopy (POM), a differential scanning calorimetry (DSC), a X‐ray diffraction (XRD), and a parallel‐plate rheometer (PPR). The studies revealed that the composition of PBCSs played an important role in controlling their properties. Only one Tg can be seen for PBCSs by DSC, which demonstrate they are miscible copolymers. PBCSs exhibited lower crystallization capacity than its homopolyesters either Poly (butylene succinate) (PBS) or poly (cyclohexanedimethylene succinate) (PCS). It also proved that the cyclohexyl group of CHDM not only affected the crystalline formation, but also changed spherulitic morphology during crystallization. The spherulitic size gradually decreased with an increase of CS content. When CS content approached 50 wt %, the crystallization ability reached minimum. By comparing the effect of temperature with shear rate, it concluded that the viscosities of PBCSs were more sensitive to temperature rather than shear rate, and flow activation energies of PBCSs linearly increased with an increase of CS content. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40103.  相似文献   

12.
Poly(butylene terephthalate)‐co‐poly(butylene succinate)‐block‐poly(ethylene glycol) segmented random copolymers, with poly(butylene succinate) (PBS) molar fraction (MPBS) varying from 10 to 60 %, were synthesized through a melt polycondensation process and characterized by means of GPC, NMR, DSC and mechanical testing. The number‐average relative molecular mass of the copolymers was higher than 4 × 104 g mol?1 with polydispersity below 1.9. Sequence distribution analysis on the two types of hard segments by means of 1H NMR revealed that the number‐average sequence length of PBT decreased from 2.80 to 1.23, while that of PBS increased from 1.27 to 4.76 with increasing MPBS. The random distribution of hard segments was also justified because of the degree of randomness around 1.0. Micro‐phase separation structure was verified for the appearance of two glass transition temperatures and two melting points, respectively, in DSC thermograms of most samples. The crystallinity of hard segments changed with the crystallizability controlled by the average sequence length and reached the minimum value at an MPBS of about 50–60 mol%. The results can also be ascribed to the co‐crystallization between two structurally analogous hard segments. Mechanical testing results demonstrated that incorporating a certain amount of PBS moieties (less than 30 mol%), at the expense of a minute depression of the elastic modulus, that higher relative elongation and more flexibility of polymer chain could be expected. Maximum equilibrium water absorption and faster degradation rates were observed on samples with higher MPBS values and lower crystallinity of hard segments were better hydrophilicity of the polymer chain, through in vitro degradation experiments. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
Short‐segmented block copolymers of poly(butylene succinate‐co‐butylene fumarate) were synthesized and their crystallinity and crosslinking behavior were investigated. 1H NMR was used to characterize the microstructure and composition of the copolyesters. Molecular weight determination was performed using gel permeation chromatography. Based on the DSC results all copolyesters were crystalline and the degree of crystallinity of the copolymers did not change with butylene fumarate mole fraction due to co‐crystallization of the butylene succinate and butylene fumarate groups. Crosslinked copolyesters showed a lower crystallization rate and degree of crystallinity while the crystallization temperature shifted to higher temperatures compared with uncrosslinked copolyesters due to the formation of nucleating agents by crosslinkages. Photo‐DSC was used to investigate the crosslinking kinetics for UV‐initiated photo‐curing. Three kinetics parameters including the rate constant (k) and the orders of the initiation and propagation reactions (m and n, respectively) were determined for the quenched and unquenched copolymers. © 2016 Society of Chemical Industry  相似文献   

14.
Poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), and PES‐rich copolyesters were synthesized using an effective catalyst, titanium tetraisopropoxide. PES was blended with minor amounts of PBS for the comparison. The compositions of the copolyesters and the blends were determined from NMR spectra. Their thermal properties were studied using a differential scanning calorimeter (DSC), a temperature modulated DSC (TMDSC), and a thermogravimetric analyzer. No significant difference exists among the thermal stabilities of these polyesters and blends. For the blends, the reversible curves of TMDSC showed a distinct glass‐rubber transition temperature (Tg), however, the variation of the Tg values with the blend compositions was small. Isothermal crystallization kinetics and the melting behavior after crystallization were examined using DSC. Wide‐angle X‐ray diffractograms (WAXD) were obtained for the isothermally crystallized specimens. The results of DSC and WAXD indicate that the blends have a higher degree of crystallinity and a higher melting temperature than those of the corresponding copolymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Nonisothermal crystallization behaviors of both poly(butylene succinate) (PBS) and poly(ethylene glycol) (PEG) segments within PBS‐PEG (PBSEG) multiblock copolymers were investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization kinetics of both PBS and PEG segments were analyzed by Avrami, Ozawa, and Mo methods. The results showed that both of Avrami and Mo methods were successful to describe the nonisothermal crystallization kinetics of PBS and PEG segments. The results of crystallization kinetics indicated that the crystallization rate of PBS segment decreased with PBS segment content and/or LPBS, while that of PEG segment decreased with Mn,PEG or FPEG. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40940.  相似文献   

16.
Partially crosslinked poly(β‐hydroxybutyrate‐co‐β‐hydroxyvalerate)/poly(butylene succinate) (PHBV/PBS) and poly(β‐hydroxybutyrate)/poly(butylene succinate) (PHB/PBS) blends were prepared by melt compounding with dicumyl peroxide. The effect of partial crosslinking on crystallization of the PHBV/PBS and PHB/PBS blends was investigated systematically. Differential scanning calorimetry results showed that the overall crystallization rates of both PHBV and PBS in their blends were enhanced considerably by the partial crosslinking. Similar results were also detected in the PHB/PBS blends. The polarized optical microscope observation displayed that the nuclei density of PHBV was increased while the spherulitic morphology did not change much. Conversely, the PBS spherulites turned into cloud‐like morphology after the partial crosslinking which is a result of the decrease in spherulite size, the reduction in interspherulite distance and the interconnection of fine PBS domains. Wide angle X‐ray diffraction patterns confirmed the enhancement in crystallization of the PHBV/PBS blends after the partial crosslinking without modification on crystalline forms of the PHBV and PBS components. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41020.  相似文献   

17.
Biodegradable polyesters such as poly(butylene succinate) (PBS), poly(propylene succinate) (PPS), and poly(butylene succinate‐co‐propylene succinate)s (PBSPSs) were synthesized respectively, from 1,4‐succinic acid with 1,4‐butanediol and 1,3‐propanediol through a two‐step process of esterification and polycondensation in this article. The composition and physical properties of both homopolyesters and copolyesters were investigated via 1H NMR, DSC, TGA, POM, AFM, and WAXD. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (Tm), crystallization temperature (Tc), crystallinity (X), and thermal decomposition temperature (Td) of these polyesters decreased gradually as the content of propylene succinate unit increased. PBSPS copolyesters showed the same crystal structure as the PBS homopolyester. Besides the normal extinction crosses under the polarizing optical microscope, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Branched poly(butylene succinate) (PBS) copolymers were synthesized, from succinic acid (SA), 1,4‐butanediol (1,4‐BD), and 1,2‐octanediol (1,2‐OD) through a two‐step process containing esterification and polycondensation, with different mole fractions of 1,2‐OD segments. The branched PBS copolymers were characterized with 1H‐NMR, differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), thermogravimetric analysis (TGA), dynamic rheological testing, and tensile properties analysis. The results of DSC and WAXD show that, with the increasing of the 1,2‐OD segments content, the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), and the degree of crystallinity (Xc) decrease. While the crystal structure of PBS does not change by introducing 1,2‐OD segments. The results of TGA and dynamic rheological testing indicate that the thermal stability of neat PBS is improved with the addition of 1,2‐OD segments. The incorporation of 1,2‐OD segments has some effects on the rheological properties of PBS, such as complex viscosities (|η*|), storage modulus (G′), and loss modulus (G″). Tensile testing demonstrates that the elongation at break is improved significantly with increasing 1,2‐OD segments content, but without a notable decrease of tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The crystallization, melting behavior, and spherulitic growth kinetics of biodegradable poly(ethylene succinate‐co‐6 mol % butylene succinate) [P(ES‐co‐6 mol % BS)] were investigated and compared with those of the homopolymer poly(ethylene succinate) (PES) in this work. The crystal structure of P(ES‐co‐6 mol % BS) was the same as that of neat PES, but the crystallinity decreased slightly because of the incorporation of the butylene succinate content. The glass‐transition temperature decreased slightly for P(ES‐co‐6 mol % BS) compared to that for neat PES. The melting point of P(ES‐co‐6 mol % BS) decreased apparently; moreover, the equilibrium melting point was also reduced. Two melting endotherms were found for P(ES‐co‐6 mol % BS) after isothermal crystallization; this was ascribed to the melting, recrystallization, and remelting mechanism. The spherulitic growth rate of P(ES‐co‐6 mol % BS) was slower than that of neat PES at a given crystallization temperature. Both neat PES and P(ES‐co‐6 mol % BS) exhibited a crystallization regime II to III transition; moreover, the crystallization regime transition temperature of P(ES‐co‐6 mol % BS) shifted to a low temperature compared with that of neat PES. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号