首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

3.
This study examines the interfacial adhesion between poly(styrene) (PS) and poly(styrene‐co‐acrylonitrile) (SAN) interfaces reinforced with poly(styrene‐co‐vinyl phenol) (PS‐ran‐PSPh) random copolymers using an asymmetric double‐cantilever beam (ADCB) test. The effects of oligomer and copolymer composition on interfacial adhesion were investigated. The results showed that the interfacial adhesion of the PS/SAN interface was increased significantly after removing the residual oligomer from the SAN. The interfacial adhesion was also measured for five‐purified SAN materials in the range 17–31 wt%. The highest level of PS/SAN adhesion was observed for 17% AN (acrylonitrile) materials. In addition, the interfacial adhesion of a mixture of diblock and random copolymer was measured in order to investigate which is the most effective method. The results showed that mixture systems are more cost‐effective with higher adhesion, which is independent of temperature. Atomic force microscopy showed that a single craze ahead of the crack is a possible failure mode during PS/SAN interface fracture. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The epoxy/polystyrene system is characterized by a poor adhesion between the constituent phases, which determines its mechanical properties. The adhesion can be improved via blends based on epoxy resin and random copolymers, poly(styrene‐co‐allylalcohol) (PS‐co‐PA). In this work, the influence of PS‐co‐PA content and the good adhesion between the phases on the tensile properties and the fracture toughness achieved through instrumented Charpy tests have been investigated. The tensile strength and the deformation at break showed an increase in the PS‐co‐PA content while the Young's modulus remained the same. The tensile fracture surfaces revealed that the improvement of these magnitudes was mainly due to a crack deflection mechanism. Also, the fracture toughness of the blends was superior to that of the pure epoxy resin. The main operating toughening mechanism was crack deflection. The fractographic analysis showed that ~ 80% of the particles were broken, and the crack tended to divert from its original path through the broken PS‐co‐PA particles. The remaining particles were detached from the epoxy resin, and the holes left suffered plastic deformation. Analytical models were used to predict successfully the toughness due to these mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Block copolymers of polycarbonate‐b‐poly(methyl methacrylate) (PC‐b‐PMMA) and tetramethyl poly(carbonate)‐b‐poly(methyl methacrylate) (TMPC‐b‐PMMA) were examined as compatibilizers for blends of polycarbonate (PC) with styrene‐co‐acrylonitrile (SAN) copolymer. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) technique and an asymmetric double cantilever beam fracture test. The average diameter of dispersed particles and interfacial tension of the PC/SAN blends were reduced by adding compatibilizer to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing interfacial adhesion with compatibilizer. TMPC‐b‐PMMA copolymer was more effective than PC‐b‐PMMA copolymer as a compatibilizer for the PC/SAN blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2649–2656, 2003  相似文献   

7.
Poly(vinyl acetate) (PVAc) was added to the crystalline blends of poly(ethylene oxide) (PEO) and poly(L ‐lactide) (PLLA) (40/60) of higher molecular weights, whereas diblock and triblock poly(ethylene glycol)–poly(L ‐lactide) copolymers were added to the same blend of moderate molecular weights. The crystallization rate of PLLA of the blend containing PVAc was reduced, as evidenced by X‐ray diffraction measurement. A ringed spherulite morphology of PLLA was observed in the PEO/PLLA/PVAc blend, attributed to the presence of twisted lamellae, and the morphology was affected by the amount of PVAc. A steady increase in the elongation at break in the solution blend with an increase in the PVAc content was observed. The melting behavior of PLLA and PEO in the PEO/PLLA/block copolymer blends was not greatly affected by the block copolymer, and the average size of the dispersed PEO domain was not significantly changed by the block copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3618–3626, 2001  相似文献   

8.
The toughness behavior of PPO–SAN blends with the modifier poly(styrene‐block‐butadiene) (SBSB) and with poly(styrene‐block‐butadiene‐block‐methyl methacrylate) copolymers (SBM) under impact loading conditions has been investigated. The observed morphology of blends compatibilized with SBM, in which the rubber phase discontinuously accumulated at the PPO–SAN interface, correlated with about 20 times higher energy dissipation up to maximum force and about seven times higher deformation capacity compared to pure PPO–SAN blends. In contrast, the fracture behavior of the SBSB‐modified blends was not as strongly dependent on the rubber content. It is especially noteworthy that although the SBM modification resulted in a strong increase in toughness of the PPO–SAN blends, no decrease in stiffness could be found with up to 15% rubber additions. The values of Young's moduli remained at the same high level of the nonmodified material. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2037–2045, 2000  相似文献   

9.
The miscibility of blends of bisphenol‐A polycarbonate (BAPC) and tetramethyl bisphenol‐A polycarbonate (TMPC) with copolymers of poly(styrene‐co‐4‐hydroxystyrene) (PSHS) was studied in this work. It has been demonstrated that BAPC is miscible with PSHS over a region of approximately 45–75 mol % hydroxyl groups in the copolymer. TMPC has a wider miscible window than BAPC when blended with PSHS. The blend miscibility was considered to be driven by the intermolecular attractive interactions between the hydroxyl groups of the PSHS and the π electrons of the aromatic rings of both polycarbonates (PCs). As the FTIR measurements showed, after blending of BAPC with PSHS, there is no visible shift of the carbonyl band of BAPC at 1774 cm−1, whereas the stretching frequency of the free hydroxyl groups of the copoly‐ mers at 3523 cm−1 disappeared. The large positive values of the segment interaction energy density parameter Bst‐HS calculated from the group contribution approach indicated that the intramolecular repulsive interaction may also have played a role in the promotion of the blend miscibility. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 639–646, 1999  相似文献   

10.
A good way of achieving compatibility in polymer blends of poly(styrene‐co‐acrylonitrile) (S/AN) and bisphenol A polycarbonate (PC) is the chemical modification of S/AN in the melt. A catalyzed reaction of the nitrile groups with a substituted 2‐amino alcohol or 2‐amino phenol resulted in a conversion of nitrile groups of 55–75% in 60 min. The introduced heterocyclic structures were ethyl hydroxymethyl oxazoline (EHMOXA) and benzoxazole (BenzOXA), respectively. The use of dibutyltin oxide as a catalyst led to the highest efficiency. The modified polymer was characterized by Fourier transform infrared and NMR spectroscopy, elemental analysis, and reactions with organic acids and anhydrides. The modified S/AN showed good technical compatibility (single glass‐transition temperature) with PC in blends made from solution and from the melt. All blends were characterized with oscillating rheometry and differential scanning calorimetry. Rheological measurements showed that EHMOXA–S/AN reacted with PC and had crosslinked structures, whereas BenzOXA–S/AN showed compatibilization without any (crosslinking) reaction. The melt blends of BenzOXA–S/AN and PC showed a downward shift in the complex viscosity due to the influence of the BenzOXA group. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2322–2332, 2003  相似文献   

11.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

12.
The compatibilizing effect of the ionomer, poly(styrene‐co‐sodium acrylate) (PSSAc), on immiscible blends of polystyrene (PS)/polyamide 6 (PA6) was studied by mechanical tests and scanning electron microscopy. The PSSAc acts as an effective compatibilizer because both the deformation at break (%) obtained by tensile stress–strain tests and the impact rupture energy are larger in blends containing small amounts of PSSAc. The morphologies of the fractured surfaces produced by tensile stress–strain tests of blends with or without the ionomer confirm that PSSAc increases the interfacial adhesion between PS and PA6 phases. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2545–2551, 2004  相似文献   

13.
Poly(styrene‐co‐acylonitrile) was used to modify diglycedyl ether of bisphenol‐A type epoxy resin cured with diamino diphenyl sulfone and the modified epoxy resin was used as the matrix for fiber‐reinforced composites (FRPs) to get improved mechanical properties. E‐glass fiber was used as fiber reinforcement. The tensile, flexural, and impact properties of the blends and composites were investigated. The blends exhibited considerable improvement in mechanical properties. The scanning electron micrographs of the fractured surfaces of the blends and tensile fractured surfaces of the composites were also analyzed. The micrographs showed the influence of morphology on the properties of blends. Results showed that the mechanical properties of glass FRPs increased gradually upon fiber loading. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Dynamic viscoelastic properties for miscible blends of poly(?‐caprolactone) (PCL) and poly(styrene‐co‐acrylonitrile) (SAN) were measured. It was found that the time–temperature superposition principle is applicable over the entire temperature range studied for the blends. The temperature dependency of the shift factors aT can be expressed by the Williams–Landel–Ferry equation: log aT = ?8.86(T ? Ts)/(101.6 + T ? Ts). The compositional dependency of Ts represents the Gordon–Taylor equation. The zero‐shear viscosities are found to increase concavely upward with an increase in weight fraction of SAN at constant temperature, but concavely downward at constant free volume fraction. It is concluded that the relaxation behavior of the PCL/SAN blends is similar to that of a blend consisting of homologous polymers. It is emphasized that the viscoelastic functions of the miscible blends should be compared in the iso‐free volume state. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2037–2041, 2001  相似文献   

15.
Clay‐dispersed poly(styrene‐co‐acrylonitrile) nanocomposites (PSAN) were synthesized by a free radical polymerization process. The montmorillonite (MMT) was modified by a cationic surfactant hexadecyltrimethylammonium chloride. The structures of PSAN were determined by wide‐angle X‐ray diffraction and FTIR spectroscopy. The dispersion of silicate layers in the polymer matrix was also revealed by transmission electron microscopy (TEM). It was confirmed that the clay was intercalated and exfoliated in the PSAN matrix. The increased thermal stability of PSAN with the addition of clay was observed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of PSAN were measured in the frequency range 100 Hz to 1 MHz at 35–70°C. It was found that the dielectric constant from the dipole orientation had been suppressed due to the intercalation of clay. The dielectric loss is strongly related to the residual sodium content of clay, which increases as the sodium content increases by the addition of clay. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Autopolymerization of styrene‐N‐butylmaleimide mixtures at 125 or 140°C in the presence of a stable nitroxyl radical [2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO)] was found to proceed in a pseudoliving manner. Unimolecular initiators, which were originated by trapping self‐generated radical species with TEMPO, took part in the process. Under the studied experimental conditions, the TEMPO‐controlled autopolymerization with a varying comonomer ratio provided virtually alternating copolymers of narrow molecular weight distributions. The molecular weights of the copolymers increased with conversions. The obtained styrene‐N‐butylmaleimide copolymers containing TEMPO end groups were used to initiate the polymerization of styrene. The polymerization yielded poly(styrene‐coN‐butylmaleimide)‐polystyrene block copolymers with various polystyrene chain lengths and narrow molecular weight distributions. The compositions, molecular weights, and molecular weight distributions of the synthesized block copolymers and the initial poly(styrene‐coN‐butylmaleimide) precursors were evaluated using nitrogen analysis, gel permeation chromatography, and 1H‐ and 13C‐NMR spectroscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2378–2385, 1999  相似文献   

17.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

18.
The poly(ε‐caprolactone) (PCL)/starch blends were prepared with a coextruder by using the starch grafted PLLA copolymer (St‐g‐PLLA) as compatibilizers. The thermal, mechanical, thermo‐mechanical, and morphological characterizations were performed to show the better performance of these blends compared with the virgin PCL/starch blend without the compatibilizer. Interfacial adhesion between PCL matrix and starch dispersion phases dominated by the compatibilizing effects of the St‐g‐PLLA copolymers was significantly improved. Mechanical and other physical properties were correlated with the compatibilizing effect of the St‐g‐PLLA copolymer. With the addition of starch acted as rigid filler, the Young's modulus of the PCL/starch blends with or without compatibilizer all increased, and the strength and elongation were decreased compared with pure PCL. Whereas when St‐g‐PLLA added into the blend, starch and PCL, the properties of the blends were improved markedly. The 50/50 composite of PCL/starch compatibilized by 10% St‐g‐PLLA gave a tensile strength of 16.6 MPa and Young's modulus of 996 MPa, respectively, vs. 8.0 MPa and 597 MPa, respectively, for the simple 50/50 blend of PCL/starch. At the same time, the storage modulus of compatibilized blends improved to 2940 MPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
In polymer blends, the composition and microcrystalline structure of the blend near surfaces can be markedly different from the bulk properties. In this study, the enzymatic degradation of poly(ε‐caprolactone) (PCL) and its blends with poly(styrene‐co‐acrylonitrile) (SAN) was conducted in a phosphate buffer solution containing Pseudomonas lipase, and the degradation behavior was correlated with the surface properties and crystalline microstructure of the blends. The enzymatic degradation preferentially took place at the amorphous part of PCL film. The melt‐quenched PCL film with low crystallinity and small lamellar thickness showed a higher degradation rate compared with isothermally crystallized (at 36, 40, and 44°C) PCL films. Also, there was a vast difference in the enzymatic degradation behavior of pure PCL and PCL/SAN blends. The pure PCL showed 100% weight loss in a very short time (i.e., 72 h), whereas the PCL/SAN blend containing just 1% SAN showed ~50% weight loss and the degradation ceased, and the blend containing 40% SAN showed almost no weight loss. These results suggest that as degradation proceeds, the nondegradable SAN content increases at the surface of PCL/SAN films and prevents the lipase from attacking the biodegradable PCL chains. This phenomenon was observed even for a very high PCL content in the blend samples. In the blend with low PCL content, the inaccessibility of the amorphous interphase with high SAN content prevented the attack of lipase on the lamellae of PCL. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 868–879, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号