首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an environmentally “green” method to improve adhesion at a polymer/metal interface by using supercritical carbon dioxide (scCO2). Spun-cast polystyrene (PS) and poly(methyl methacrylate) (PMMA) thin films on cleaned Si wafers were used for this study. Film thicknesses of both polymer films were prepared in the range of 100 Å to 1600 Å. We exposed the films to scCO2 in the pressure-temperature (P–T) range corresponding to the density-fluctuation ridge, where the excess swelling of both polymer films occurred, and then froze the swollen structures by quick evaporation of CO2. A chromium (Cr) layer with film thickness of 300–400 Å was deposited onto the exposed film by using an E-beam evaporator. X-ray reflectivity (XR) measurements showed that the interfacial width between the Cr and exposed polymer layers increased by a factor of about two compared with that without exposure to scCO2. In addition, the large interfacial broadening was found to occur irrespective of the thickness of both polymer films. After the XR measurements, the dewetting structures of the PS/Cr films induced by additional annealing were characterized by using atomic force microscopy, showing improved surface morphology in the exposed films. Contact angle measurements showed that a decrease in interfacial tension with exposure to scCO2 accompanied the increase in interfacial width.  相似文献   

2.
An apparatus is described to measure interfacial tension for molten polymer pairs. The apparatus is based on the pendant drop method. A CCD color video camera captures the image of a pendant drop profile, which is analyzed on-line using a microcomputer. These almost continuous measurements permit the detection of possible changes in the behavior of the melt that might affect the interfacial tension through thermal degradation. A special syringe to inject the pendant drop has been designed in order to avoid problems such as the capillary effect of the tube of the syringe and the necking and detachment of the pendant drop. The accuracy of the apparatus was verified using water/n-hexane and water/n-octane. Experimental results for polypropylene/polystyrene (PP/PS) are presented. The interfacial tension between the polymer pair decreases as temperature increases and as molecular weight decreases. Interfacial tension is estimated from the drop shape when the drop is at mechanical equilibrium. For polymer systems, mechanical equilibrium normally takes from 1 to 10 h to occur. However, transient values of interfacial tension (apparent interfacial tension values obtained before mechanical equilibrium is reached) may be used to estimate the interfacial tension at equilibrium by extrapolation, thus reducing the required experimental time.  相似文献   

3.
《中国化学工程学报》2014,22(11-12):1302-1306
In order to investigate the effect of organic liquid molecular structure and the intermolecular force operating with CO2 molecules and organic liquid molecules on interfacial tension (IFT) between CO2 and organic liquid at the first contact, the interfacial tension between CO2 and hexane, octane, ethanol and cyclohexane at different temperatures and pressures is measured by using the pendant drop method and the axisymmetric drop shape analysis (ADSA). The results show that the interfacial tension between CO2 and organic liquids is affected by the polarity and the structure of the organic liquid molecule obviously. The intermolecular force operating within CO2 molecules or organic liquid, and that between CO2 and organic liquids molecules play a dominate role on the interfacial tension between CO2 and the organic liquids.  相似文献   

4.
Interfacial tension (IFT) of fish oil triglycerides (TG) and fatty acid ethyl esters (FAEE) in contact with carbon dioxide (CO2) was measured according to the pendant drop method at 40, 55 and 70 °C and pressures up to 25 MPa. The IFT of both TG and FAEE decreased substantially with CO2 pressure. The IFT of FAEE vanished at elevated pressures, whereas that of TG decreased to a fairly constant level of about 2 mN/m. The IFT was correlated using a model taking into account the density, pressure and temperature of CO2, thereby facilitating the calculation of the ideal pendant drop volume as well as the surface excess concentration of CO2. In the pressure range studied, the pendant drop volume for FAEE decreased with pressure, whereas for TG it increased at elevated presssures due to the predominant effect of buoyancy. Furthermore, the change in IFT over time was determined at 55 °C for TG in contact with CO2 at pressures up to 11.4 MPa showing a decrease of IFT over time at low pressures, whereas at higher pressures it remained nearly constant. IFT influences drop formation as well as the disintegration of falling films thereby affecting the performance of separation processes.  相似文献   

5.
When CO2 is dissolved into a polymer, the viscosity of the polymer is drastically reduced. In this paper, the melt viscosities of low‐density polyethylene (LDPE)/supercritical CO2 solutions were measured with a capillary rheometer equipped at a foaming extruder, where CO2 was injected into a middle of its barrel and dissolved into the molten LDPE. The viscosity measurements were performed by varying the content of CO2 in the range of 0 to 5.0 wt% and temperature in the range of 150°C to 175°C, while monitoring the dissolved CO2 concentration on‐line by Near Infrared spectroscopy. Pressures in the capillary tube were maintained higher than an equilibrium saturation pressure so as to prevent foaming in the tube and to realize single‐phase polymer/CO2 solutions. By measuring the pressure drop and flow rate of polymer running through the tube, the melt viscosities were calculated. The experimental results indicated that the viscosity of LDPE/CO2 solution was reduced to 30% of the neat polymer by dissolving CO2 up to 5.0 wt% at temperature 150°C. A mathematical model was proposed to predict viscosity reduction owing to CO2 dissolution. The model was developed by combining the Cross‐Carreau model with Doolittle's equation in terms of the free volume concept. With the Sanchez‐Lacombe equation of state and the solubility data measured by a magnetic suspension balance, the free volume fractions of LDPE/CO2 solutions were calculated to accommodate the effects of temperature, pressure and CO2 content. The developed model can successfully predict the viscosity of LDPE/CO2 solutions from PVT data of the neat polymer and CO2 solubility data.  相似文献   

6.
Improvements in carbon nanotube (CNT) dispersion and subsequent mechanical properties of CNT/poly(phenylsulfone) (PPSF) composites were obtained by applying the supercritical CO2 (scCO2)‐aided melt‐blending technique that has been used in our laboratory for nanoclay/polymer composite preparation. The preparation process relied on rapid expansion of the CNTs followed by melt blending using a single‐screw extruder. Scanning electronic microscopy results revealed that the CNTs exposed to scCO2 at certain pressures, temperatures, exposure time, and depressurization rates have a more dispersed structure. Microscopy results showed improved CNT dispersion in the polymer matrix and more uniform networks formed with the use of scCO2, which indicated that CO2‐expanded CNTs are easier to disperse into the polymer matrix during the blending procedure. The CNT/PPSF composites prepared with scCO2‐aided melt blending and conventional melt blending showed similar tensile strength and elongation at break. The Young's modulus of the composite prepared by means of conventional direct melt blending failed to increase beyond the addition of 1 wt% CNT, but the scCO2‐aided melt‐blending method provided continuous improvements in Young's modulus up to the addition of 7 wt% CNT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
In this study, sessile drops are imaged in a high-pressure and high-temperature view chamber to determine the density and interfacial tension of linear polypropylene (LPP) and branched polypropylene (BPP) melts in supercritical carbon dioxide (CO2). The pressure-volume-temperature (PVT) data of polyprophylene (PP)-CO2 is investigated by monitoring the swelling changes of the polymer melt in supercritical CO2. The density difference between the polymer/CO2 mixture and the CO2 is determined by combining the swelling results with the CO2 solubility information in the polymer melt. Both the Sanchez-Lacombe (SL) and the Simha-Somcynsky (SS) equations-of-state (EOS) are applied to predict the density of the PP-CO2 mixture, which is then compared to the density data obtained experimentally. The dependence of interfacial tension on the temperature and pressure of PP in supercritical CO2 is investigated at temperatures from 180 °C to 220 °C and pressures up to 31 MPa. Effects of long-chain branching on the density and interfacial tension of PP-CO2 mixtures are discussed.  相似文献   

8.
In this work, the influence of temperature, molecular weight, and polydispersity of polystyrene on interfacial tension between low‐density polyethylene (LDPE) and polystyrene (PS) was evaluated using the pendant drop method. It was shown that interfacial tension between LDPE and PS decreases with increasing temperature for all LDPE–PS pairs studied. The temperature coefficient (∂γ/∂T) (where λ is interfacial tension and T is temperature) was higher for lower molecular weight and larger polydispersity of PS. The interfacial tension between LDPE and PS at a temperature of 202°C increased when the molecular weight of polystyrene was varied from 13,000 to 30,000. When the molecular weight of PS was further increased, the interfacial tension was shown to level off. The effect of polydispersity on interfacial tension between PS and LDPE, at a temperature of 202°C, was studied using PS with a constant‐number average molecular weight and varying polydispersity. The interfacial tension was shown to decrease with increasing polydispersity. However, the influence of polydispersity was lower for PS of higher molecular weight. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2423–2431, 1999  相似文献   

9.
S.E. Harton  R.J. Spontak  T. Koga  J.C. Sokolov 《Polymer》2005,46(23):10173-10179
Supercritical CO2 (scCO2) has been used to facilitate reactions in thin film bilayers between functionalized polystyrene and poly(methyl methacrylate) at temperatures far below the glass transition temperatures of the respective polymers. Secondary ion mass spectrometry (SIMS) is used to monitor the reaction progression directly by measuring the interfacial excess of deuterated PS. Complementary X-ray reflectometry (XR) yields the interfacial width and surface roughness of bilayer films for reactive systems with and without the addition of scCO2, and comparisons are made with unreactive reference systems. From XR and SIMS analyses, the interfacial width and roughness have been found to be effectively independent of the reaction conditions employed here, and the primary impact of incorporated scCO2 is enhanced mobility of the reactive polymer chains. The use of scCO2 can change polymer mobility significantly enough over a very small temperature range (ΔT∼15 °C) so that both diffusion- and reaction-controlled type behavior can be observed for otherwise identical systems.  相似文献   

10.
Improvement in clay dispersion and clay-polymer interfacial interactions are keys to producing superior nanocomposites. A supercritical CO2 (scCO2) processing method was utilized to pre-disperse commercial organic clays, for further solvent mixing with polystyrene (PS) to form nanocomposites with significant dispersion and interfacial enhancement. The effect of scCO2 processing on clay pre-dispersion, and clay dispersion and interfacial interaction in nanocomposites were investigated. SEM and WAXD of the clays indicated that after scCO2 processing the clays lose their long region ordered layer structure appreciably, associated with reduction in particle size. WAXD and TEM of the PS/clay nanocomposites showed that the polymer penetrated into the pre-dispersed clay, leading to a disordered intercalated/exfoliated structure with improved interfacial interaction rather than a disordered intercalated structure as seen with as-received clays. Relationships between those structures, rheological and barrier properties were investigated. The scCO2-processed nanocomposites showed a plateau in the low-frequency storage modules and increased complex viscosity, each associated with significant clay dispersion in the nanocomposite. With only 1.09% volume fraction of clay, significant reduction (∼49%) of oxygen permeation was achieved.  相似文献   

11.
Interfacial tension is one of the most important parameters that govern the morphology of polymer blends and the quality of adhesion between polymers. However, few data are available on interfacial tension due to experimental difficulties. A pendant drop apparatus was used for the determination of the interfacial tension for the polymer pair polypropylene/polystyrene (PP/PS). The effects of temperature and molecular weight were evaluated. The range of temperatures used was from 178° to 250°C, and the range of molecular weights used was from 1590 to 400,000. The interfacial tension decreased linearly with increasing temperature. With only one exception, higher molecular weight systems showed weaker dependence of interfacial tension on temperature than lower molecular weight systems. Also, polydisperse systems showed a stronger dependency on temperature than the monodisperse systems. The value of the interfacial tension, which increases with molecular weight, appears to level off at molecular weights above the entanglement chain length. For the polymer pair PP/PS, the dependency of the interfacial tension on the number average molecular weight appears to follow the well-known semi-empirical (?2/3) power rule over most of the range of molecular weights. Comparable correlations were obtained with values of the power between ?1/2 and ?1.0.  相似文献   

12.
Jingya Shi  Peiyi Wu  Lei Li  Tao Liu  Ling Zhao 《Polymer》2009,50(23):5598-5604
The solid-solid crystalline transformation of isotactic polybutene-1 (iPB-1) from tetragonal form II to hexagonal form I could be accelerated by supercritical carbon dioxide (scCO2). In this study, in-situ Fourier transform infrared spectroscopy (FTIR) and two dimensional correlation spectroscopy (2DIR) is used to observe and investigate the crystallization behaviour of iPB in scCO2 and compressed CO2. Based on the transform sequence given by 2DIR analysis, this transformation of helical chain structures is found to be initiated with the motion of side chains and followed by the movement of main chains. It is speculated that the motion of polymer chains was enhanced with the diffusion of CO2. Also this crystalline transition is observed even in compressed CO2, suggesting that CO2 could also diffused into polymer under high pressure near the critical pressure. This diffusion of CO2 is indicated by the growth of IR bands being assigned to the stretching vibration of C–O. A further investigation on the mechanically heating and freely cooling of iPB provides more evidences on the process of structure transition. The result implies that the nucleus of tetragonal form II formed in the melt is not affected by the existence of scCO2, but the crystallization temperature become obviously lower.  相似文献   

13.
In this work, an experimental comparison between five different techniques to measure interfacial tension between molten polymers is presented. The five techniques include two equilibrium methods: the pendant drop (PD) and the sessile drop (SD); two dynamic methods: the breaking thread (BT) and imbedded fiber retraction (IF); and a rheological method based on linear viscoelastic measurements of the blend (RM). The polymer pairs studied were polystyrene/polypropylene (PS/PP); and PP/high density polyethylene (PP/HDPE). It was possible to determine the interfacial tension between PP/PS with all the methods tested and the results corroborated within 20%. However, the interfacial tension between PP and HDPE could be evaluated only using rheological methods because of a too‐small difference of index of refraction between both polymers. The experimental precision increased in the following order: RM < SD < BT < IF < PD. The rheological method had the advantage of being simpler and faster than dynamic and equilibrium methods. However, when using the rheological method, care should be taken because the results obtained may depend upon the concentration of the blend used for the measurements. It was observed that the pendant drop and breaking thread methods cannot be used for polymers with high viscosity (above 5 × 105 Pa.s).  相似文献   

14.
Interfacial tension (IFT) is a key physicochemical parameter that plays an important role during the foaming process of polymers. The pendant droplet method is a useful technique to determine the IFT, which has been studied at mild working conditions (0–9 MPa, 303.15–313.15 K). In this work, limonene and cymene were used as solvent to prepare polymer dissolutions and observe their influence on the experimental IFT measurements. Also, the effect of CO2 on the glass transition of polystyrene and polystyrene dissolutions was studied in order to select the most suitable temperature to carry out the experiments. The behaviour of the polystyrene dissolution in the presence of CO2 can be considered similar to molten polymer. A controlled foaming of the polystyrene-solvent mixtures can be easily carried out at moderate temperature and pressures by exploiting the advantages that provide the solvent, obtaining completely “dried” PS foams.  相似文献   

15.
Water‐induced crystallization of polycarbonate (PC) was investigated in water‐saturated supercritical CO2 (scCO2) in the range of 80–160°C and 12–20 MPa, with the help of differential scanning calorimetry and wide‐angle X‐ray diffraction. Compared with pure scCO2, the enhanced plasticizing effect of water‐saturated scCO2 reduced the energy‐barrier for the motion of polymer chains, hence increased the crystallization rate of PC, and reduced the pressure threshold for crystallization from 14 to 12 MPa. On the other hand, the presence of water did not affect the thermodynamics of PC crystallization in scCO2. A 3D‐diagram was established to show the relationship between crystallization and solubility parameter of mixed supercritical fluid at different temperatures and pressures. The results show clearly that the PC has a wider range of crystallization temperature and pressure in water‐saturated scCO2 than in pure scCO2, mostly because the addition of water increased significantly the solubility parameter of mixed supercritical fluid, and decreased the difference in solubility parameter between PC and water‐saturated scCO2. POLYM. ENG. SCI., 47:1338–1343, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
This paper presents a technology to determine the melt viscosity of a PS/super-critical CO2 solution using a linear capillary tube die mounted on a foaming extruder. CO2 was injected into the extrusion barrel and the content of CO2 was varied in the range of O to 4 wt% using a positive displacement pump. Single-phase PS/CO2 solutions were formed using a microcellular extrusion system and phase separation was prevented by maintaining a high pressure in the capillary tube die. By measuring the pressure drop through the die, the viscosity of PS/CO2 solutions was determined. The experimental results indicate that the PS/CO2 solution viscosity is a senstive function of shear rate, temperature, pressure, and CO2 content. A theoretical model based on the generalized Cross-Carreau model was proposed to describe the shear-thinning behavior of PS/CO2 solutions at various shear rates. The zero-shear viscosity was modeled using a generalized Arrhenius equation to accommo-date the effects of temperature, pressure, and CO2 content. Finally, the solubility of CO2 has been estimated by monitoring the pressure drop and the absolute pressure in the capillary die.  相似文献   

17.
The solubility and diffusivity of supercritical carbon dioxide (sc‐CO2) in low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), polypropylene (PP), ethylene‐ethylacrylate copolymer (EEA) and polystyrene (PS) were measured at temperatures from 150°C to 200°C and pressures up to 12 MPa by using the Magnetic Suspension Balance (MSB), a gravimetric technique for gas sorption measurements. The solubility of CO2 in each polymer was expressed by Henry's constant. The interaction parameter between CO2 and polymer could be obtained from the solubility data, and it was used to estimate the Pressure‐Volume‐Temperature relationship and the specific free volume of polymer/CO2 mixtures. The diffusion coefficients were also measured by the MSB for each polymer. The resulting diffusion coefficients were correlated with the estimated free volume of polymer/CO2 mixture. Combining Fujita's and Maeda and Paul's diffusion models, a model was newly developed in order to predict diffusion coefficients for the polymers studied. Polym. Eng. Sci. 44:1915–1924, 2004. © 2004 Society of Plastics Engineers.  相似文献   

18.
Supercritical fluids have been established as alternative foaming agents in various polymers as well as nanocomposite systems. Most recently, supercritical carbon dioxide (scCO2) has also been used in some studies as a medium of clay dispersion in the polymer matrix providing a solvent-free fabrication route for nanocomposites. In this work, this latter route was followed for the development of porous poly(ɿ-caprolactone) (PCL)/clay nanocomposites after pressure quench. Similarly, PCL/clay nanocomposites were also prepared using the solvent casting and melt blending methods and were then processed with scCO2 with the batch foaming technique (isothermal pressure quench) to produce their porous counterparts. Poor clay dispersion and non-uniform porous structures were observed when pure CO2 was used as a dispersion medium for nanocomposite preparation and as a blowing agent, respectively. On the contrary, polymer intercalation and more uniform cell structures were produced when CO2⿿ethanol mixtures were used as blowing agents.  相似文献   

19.
An integrated process of melt polycondensation modification and foaming of poly(ethylene terephthalate) (PET) was performed in a high pressure vessel assisted by supercritical carbon dioxide (scCO2). ScCO2 was firstly employed to sweep PET melt, i.e., high pressure CO2 continuously flows through the vessel at a fixed flow rate to remove small molecules for higher molecular weight PET, then this modified PET melt was directly foamed through a rapid depressurization process using scCO2 as blowing agent. In this integrated process, PET with high melt strength after polycondensation modification could be foamed directly in molten state. Therefore, re-molten process of solid modified PET pellets was canceled to avoid its degradation and CO2 saturation time could be saved in foaming process, thus processing time could be shortened and energy efficiency could be improved. The influences of scCO2 sweeping treatment time, pressure and flow rate on properties of the modified PETs and cell morphologies of the foamed PETs were investigated respectively. The results showed that CO2 sweeping treatment could effectively enhance PET melt polycondensation modification process, which was superior to that of N2 treatment. PET foams with average cell diameter of 32–62 μm and cell density of 1 × 107 to 4 × 107 cells/cm3 have been obtained in the integrated process. Compared with the process of only foaming modified PET by scCO2 or performing scCO2 assisted modified PET further melt polycondensation process and scCO2 foaming process separately, this integrated process produced better cell morphology.  相似文献   

20.
This paper investigates the effect of varying the geometry of the die on the cell nucleation behavior of extruded PS foams blown with CO2. Three interchangeable groups of carefully calibrated filamentary dies have been used in the experimental study. The dies were deliberately designed to have either different pressure drop rates while having identical die pressures and flow rates, or different die pressures while having identical pressure drop rates and flow rates. The experimental results revealed that the geometry of the die governs the cell density of extruded PS foams, especially because of its significant effect on the pressure drop rate across the die. However, the effect of the die back pressure on the cell density was found to be marginal, whereas its effect on the cell morphology was found to be predominant. In addition, regardless of die geometry, the CO2 content proved to be a very sensitive parameter with respect to the cell nucleation behavior of extruded PS foams. On the other hand, the cell density was slightly improved by an increase of the tale content, especially at reduced concentrations of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号