首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stereocomplex crystallization between PLLA and PDLA is known to be disturbed when their molecular weights increase to >105 g · mol?1. Here, solution casting of PLLA and PDLA with different solvents was performed repeatedly to increase the time for the PLLA/PDLA solution in the concentration range in which only stereocomplex crystallites are formed and thus to elevate the stereocomplex crystallinity in the materials. The results of WAXS and DSC show that for all solvents examined the crystallinities of stereocomplex crystallites and homocrystallites increased and decreased, respectively, with increasing number of castings, indicating that repeated casting is a promising method to enhance stereocomplex crystallization.

  相似文献   


2.
The effects of incorporated nano/micro‐diamond (NMD) on the physical properties, crystallization, thermal/hydrolytic degradation of poly(L ‐lactic acid) (PLLA) were investigated for a wide NMD concentration range of 0–10 wt.‐%. Incorporated NMD increased the tensile modulus and strength of PLLA films but decreased the elongation at break of PLLA films. Incorporated NMD accelerated the crystallization of PLLA during heating and cooling and increased the absolute crystallization enthalpy of PLLA films (except for an NMD concentration of 10 wt.‐% during cooling) but did not alter the crystallization mechanism. Incorporated NMD increased and decreased the thermal stability of PLLA films for NMD concentrations of 1–5 and 10 wt.‐%, respectively, and increased the hydrolytic degradation resistance of PLLA films.

  相似文献   


3.
Stable layers of nearly monodisperse spheres of β‐polymorphic poly(vinylidene fluoride) with iridescent properties are prepared. The colloidal crystalline arrays (CCAs) were characterized by optical microscopy, differential scanning calorimetry (DSC), and FT‐IR spectroscopy. FT‐IR spectroscopic and wide‐angle X‐ray scattering (WAXS) studies revealed a β‐polymorphic PVF2 structure, the DSC study showed that the level of crystallinity in the CCA was much higher than that in the melt‐crystallized sample, and UV‐visible spectroscopy showed extinction peaks at 323 and 510 nm in the CCAs. The β‐polymorphic PVF2 structure, along with the optical extinction properties of these CCAs, raises the prospect of their application in optical filters and/or piezoelectric sensors.

Optical micrograph of PVF2 CCA films cast on glass substrates.  相似文献   


4.
The properties of segmented‐copolymer‐based H‐bonding and non‐H‐bonding crystallisable segments and poly(tetramethylene oxide) segments were studied. The crystallisable segments were monodisperse in length and the non‐hydrogen‐bonding segments were made of tetraamidepiperazineterephthalamide (TPTPT). The polymers were characterised by DSC, FT‐IR, SAXS and DMTA. The mechanical properties were studied by tensile, compression set and tensile set measurements. The TPTPT segmented copolymers displayed low glass transition temperatures (Tg, ?70 °C), good low‐temperature properties, moderate moduli (G′ ≈ 10–33 MPa) and high melting temperatures (185–220 °C). However, as compared to H‐bonded segments, both the modulus and the yield stress were relatively low.

  相似文献   


5.
The effects of nucleobases, especially uracil, on the nonisothermal and isothermal crystallization, melting behavior, spherulite morphology, and crystalline structure of bio‐based and biodegradable PLLA are studied. The melt‐ and cold‐crystallization rates of PLLA increase with increasing uracil loading. The melting behavior of nonisothermally melt‐ and cold‐crystallized PLLAs depends on the uracil content. The isothermal crystallization kinetics is analyzed based on an Avrami model. The incorporation of uracil changes the t1/2/Tc profile of PLLA due to the more distinct heterogeneous nucleation effects at small supercooling. The crystalline structure of PLLA is not affected by uracil presence. The nucleation density increases and the spherulite size decreases by uracil incorporation.

  相似文献   


6.
Summary: Amorphous and crystallized poly(L ‐lactic acid) (PLLA‐A and PLLA‐C, respectively) films with different contents of N,N,N′,N′‐tetramethyl‐1,4‐phenylenediamine (TMPD) as a photosensitizer were prepared, and the effects of the addition of TMPD on the photodegradation of PLLA films were investigated. It was found that the addition of TMPD effectively enhanced the photodegradation of PLLA films and thereby decreased their molecular weight of PLLA films regardless of their crystallinity, and that PLLA films with different molecular weights can be prepared by the addition of different amounts of TMPD and subsequent UV irradiation. Too high contents of TMPD however caused the brittleness of PLLA films due to a large decrease in molecular weight. The PLLA chains in crystalline regions as well as those in amorphous regions are photodegradable even at an early stage, in marked contrast to their hydrolytic degradation, where the chains in the amorphous regions are selectively degraded. The basic changes in glass transition, cold crystallization, and melting temperatures (Tg, Tcc, and Tm, respectively) of PLLA films during UV irradiation can be ascribed to low‐temperature annealing effects; i.e., annealing‐induced stabilization in chain packing should have elevated Tg, and annealing‐induced formation of crystallite nuclei should have lowered Tcc and increased Tm. The exceptional large decreases in Tcc and Tm of UV‐irradiated PLLA‐A films and in Tg of UV‐irradiated PLLA‐C films at high TMPD contents are attributable to the large decrease in molecular weight, whereas the exceptional decrease in Tm of PLLA‐C films at high TMPD contents can be due to the folding surface structural change of crystalline regions or to the lattice disorder caused by molecular structural changes.

of PLLA‐A films before UV irradiation and after UV irradiation for 60 h as a function of TMPD content.  相似文献   


7.
The crystallization behavior of poly(L ‐lactide) (PLLA) was investigated in the presence of benzenetricarboxylamide (BTA) derivatives as crystal nucleators. BTA‐cyclohexyl (BTA‐cHe) was the most effective nucleating agent, but induced a complete loss of transparency of the processed material. On the other hand, BTA‐n‐hexyl (BTA‐nHe) enhanced crystallization with little increase in haze. PLLA containing BTA‐cHe enhanced PLLA crystallization in α‐form crystal whereas BTA‐nHe enhanced α′‐form (incomplete α‐form) with forming smaller spherulites. TEM revealed BTA‐nHe had completely dissolved in the PLLA matrix in melt and recrystallized during the thermal annealing process. It was also found that the size of the recrystallized BTA‐nHe was in the nanometer range to effectively nucleate the PLLA crystals.

  相似文献   


8.
Summary: Ternary nanocomposites based on polycarbonate (PC), poly(propylene) (PP), and attapulgite (AT) were prepared via the method of two‐step melt blending, by which the AT was blended with PP prior to compound with PC. Structure and properties of the ternary PC/PP/AT nanocomposites were investigated. The degradation of PC triggered by AT during direct blending process can be inhibited effectively by using two‐step melt blending. It was found that the morphology of encapsulation structure like sandbag was formed in PC matrix, where PP encapsulated AT fibrillar single crystals. DSC experiments showed that in PC/PP/AT ternary nanocomposites, AT had a strong heterophase nucleation effect on PP, resulting in the enhancement of crystallization degree and the crystallization temperature of PP. DMA and mechanical property results showed that the ternary nanocomposites exhibited good balanced toughness and stiffness.

TEM photograph of PC/PP/AT ternary nanocomposite.  相似文献   


9.
Summary: Non‐isothermal crystallization behavior of PTT resins synthesized with different catalysts was studied by using differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results showed that with the increase of the cooling rate, the crystallization temperature for poly(trimethylene terephthalate) (PTT) resin decreased, which indicated that the crystallization process was controlled by the nucleation. Catalyst had no effect on the crystallization development process, but had somewhat effect on the non‐isothermal crystallization mechanism. The average values of Avrami exponent, for PTT with different catalysts were between 3 and 4. It was assumed that the non‐isothermal crystallization mechanism for PTT with or without catalyst was the combination of homogenous and heterogeneous nucleation and spherulite growth, but it mainly depended on the latter. For sample 4, the non‐isothermal crystallization underwent secondary crystallization process when cooling rate was over 20 °C/min. At the same cooling rate, the crystallization temperature, the crystallization ability and the crystallization rate of PTT resins followed the sequence as: sample 2 > sample 1 ≈ sample 3 ≈ sample 4, which proved that catalysts could significantly prompt crystallization. The cooling rate had significant effect on the crystallization ability parameters of PTT, i.e., with the increase of cooling rate, the crystallization ability declined. Although catalyst could increase the crystallization ability of PTT, the effect was very limited because the effect of the molecular weight on the crystallization ability would be superior to the catalyst when the molecular weight of PTT was significantly high. The specific surface area of catalyst had also a great influence on the spherulitic morphology of PTT formed in the cooling process. The spherulite dimensions decrease with increasing the specific surface area of catalyst because of an increase in the nucleation rate, which produces more and smaller spherulites that can not grow larger before impinging on each other.

  相似文献   


10.
DSC indicated that the nucleation of PLLA is enhanced in the presence of PGA even at a PGA content as low as 0.1 wt.‐%. However, the enhancing behavior of PGA was different to that of other nucleating agents for PLLA. Polarized optical microscopy revealed that the presence of PGA increased the number of PLLA spherulites per unit area. WAXD showed that in the PLLA/PGA films, PLLA and PGA crystallize separately to form their respective crystallites and PGA crystallites were formed at a PGA content at above 3 wt.‐% (at least). FTIR spectroscopy indicated that that there are significant interactions between PLLA and PGA chains in amorphous regions. Such interactions should have enhanced the growth of PLLA crystallites from the surface of PGA crystallites.

  相似文献   


11.
Summary: In the framework of chemical recycling of polymers, leading to the generation of secondary value‐added products, PET flakes taken from post‐consumer soft drink bottles, were glycolyzed with DEG. The oligomers obtained were analyzed for their molecular weight and characterized by FT‐IR and POM. Subsequently, dimethacrylated oligoesters of PET glycolysate (PET‐GLY‐DMA) were synthesized by methacrylation of the glycolyzed PET product. The resulted monomer PET‐GLY‐DMA was studied by FT‐IR, POM and DSC. Thermal polymerization of this monomer was carried out at 80 °C in the presence of benzoyl peroxide as initiator. A UV‐curable formulation was also prepared on the basis of neat PET‐GLY‐DMA, as well as by mixing PET‐GLY‐DMA with styrene, using DMPA as photoinitiator. Nanoparticles of SiO2 were dispersed into PET‐GLY‐DMA/styrene copolymers as reinforcing agents and the mechanical properties of resins formed were studied.

Preparation of methacrylated PET glycolysate.  相似文献   


12.
Summary: The effects of various additives: poly(D ‐lactic acid) (PDLA), talc, fullerene C60, montmorillonite, and various polysaccharides, on the non‐isothermal crystallization behavior of poly(L ‐lactic acid) (PLLA), during both the heating of melt‐quenched films from room temperature, and the cooling of as‐cast films from the melt, was investigated. When the melt‐quenched PLLA films were heated from room temperature, the overall PLLA crystallization was accelerated upon addition of PDLA or the stereocomplex crystallites formed between PDLA and PLLA, the mixtures containing PDLA, and the mixture of talc and montmorillonite. No significant effects on the overall PLLA crystallization were observed for talc, C60, montmorillonite, and the mixtures containing C60. Such rapid completion of the overall PLLA crystallization upon addition of the aforementioned additives can be ascribed to the increased density (number per unit volume or area) of PLLA spherulites. When the as‐cast PLLA films were cooled from the melt, the overall PLLA crystallization completed rapidly, upon addition of PDLA, talc, C60, montmorillonite, and their mixtures. Such rapid overall PLLA crystallization is attributable to the increased density of the PLLA spherulites and the higher nucleation temperature for PLLA crystallization. In contrast, the addition of various polysaccharides has no significant effect, or only a very small effect, on the overall PLLA crystallization during heating from room temperature or during cooling from the melt. This finding means that the polysaccharides can be utilized as low‐cost fillers for PLLA‐based materials, without disturbing the crystallization of the PLLA. The effect of additives in accelerating the overall PLLA crystallization during cooling from the melt, decreased in the following order: PDLA > talc > C60 > montmorillonite > polysaccharides.

Polarization optical photomicrographs of pure PLLA, and the PLLA‐F film, with the fullerene additive, during cooling from the melt (Process IIB). Both of the photomicrographs were taken at 120 °C.  相似文献   


13.
Summary: Compacted fiber composites offer unique properties due to their lack of an extraneous matrix. The conditions of processing ultra‐high molecular weight polyethylene (UHMWPE) fibers were simulated in a heated pressure cell. In situ X‐ray diffraction measurements were used to follow the relevant transitions and the changes in the degree of crystallinity during melting and crystallization. The results strongly support the suggestion that the hexagonal crystal phase, in which the chain conformation is extremely mobile on the segmental level, constitutes the physical basis of compaction technologies for processing UHMWPE fibers into a single‐polymer composite. This report suggests that using a pseudo‐phase diagram outlining the occurrence of different phases during slow heating and the degree of crystallinity can provide valuable insight into the technological parameters relevant for optimal processing conditions.

Degree of crystallinity as a function of pressure and temperature in a region relevant to compaction processes.  相似文献   


14.
Planetary roller extruders (PREs) are currently being employed first and foremost to feed calender/lamination units, for pelleting, for compounding powdered paint and for the reuse of recyclate. In these disciplines it is the most successful multi‐screw extruder. The range of materials that are compounded extends from classical plasticised poly(vinyl chloride) (PVC), via poly(propylene) (PP) and acrylonitrile‐butadiene‐styrene (ABS), through to powdered rubber. The planetary roller extruders convince in comparison with other compounding machines through the thermally carefully compounding, the balanced ratio of shear and heat transfer and the narrow residence time distribution. Experimental investigations to analyze the process behavior of PREs were carried out for the first time.

Homogenization and dispersion at a material‐bank in the planetary roller extrusion test stand.  相似文献   


15.
Summary: Films of poly(L ‐lactic acid) (PLLA) and copolymers of L ‐lactide (LLA) with either glycolide [P(LLA‐GA)](81/19) or D ‐lactide [P(LLA‐DLA)](77/23) were prepared and an effect of comonomer type on the hydrolytic degradation of the films was studied in phosphate‐buffered solutions at 37 °C. The degraded films were investigated using gravimetry (weight loss and water absorption), gel permeation chromatography, DSC, X‐ray diffractometry, tensile testing and polarization optical microscopy. To exclude the effects of molecular weight and crystallinity on hydrolytic degradation, the films were prepared from polymers with similar molecular weights and were made amorphous by melt quenching. It was found that the hydrolytic degradation rate decreased in the order P(LLA‐GA) > P(LLA‐DLA) > PLLA. The hydrolytic degradation rate constant of PLLA and LLA copolymer films increased with increasing the water absorption (hydrophilicity), or with decreasing the initial glass transition temperature or the L ‐lactyl unit sequence length, indicating that the hydrolytic degradation rate of the copolymers was closely related to these three parameters. The crystallization of P(LLA‐GA) film occurred within hydrolytic degradation for 20 weeks.

Mn of PLLA and LLA copolymer films as a function of hydrolytic degradation time.  相似文献   


16.
Summary: An organic‐inorganic hybrid material consisting of a 3‐(methacryloxy)propyl functionalized SiO2/MgO framework was synthesized. This hybrid was successfully reacted with styrene, butyl acrylate and butyl methacrylate via a free radical emulsion polymerization to form polymer composites. The polymer composites were investigated by means of FT‐IR spectroscopy, TGA, DSC and rheometry. It is shown that the polymer is linked covalently to the organic/inorganic hybrid. Although the polymer content is rather low, the composites exhibit a polymer‐like character and enhanced mechanical properties compared to the corresponding homopolymers.

  相似文献   


17.
The effects of varying concentrations of incorporated PDLA on the acceleration of PLLA homo‐crystallization due to stereocomplex (SC) crystallite formation are investigated in PLLA films doped with PDLA over the wide concentration range of 1–10 wt%. PLLA homo‐crystallization is accelerated for all the PDLA concentrations when the processing temperature Tp is just above the endset melting temperature of the SC crystallites (Tp = 226–238 °C), although the appropriate Tp range becomes narrow at low concentrations of PDLA. The accelerating effects of SC crystallites depend on the SC crystalline thickness and the interaction between the SC crystalline regions and PLLA amorphous regions for Tps below and above the melting peak temperature of the SC crystallites, respectively.

  相似文献   


18.
Summary: Hydrogels of high‐molecular‐weight poly(ethylene oxide) (PEO) have been obtained in situ by applying a very simple procedure that involves UV cross‐linking of PEO in aqueous solution. The efficiency of the photoactivated cross‐linking of thin layers of PEO in aqueous solution in the presence of (4‐benzoylbenzyl) trimethylammonium chloride as a photoinitiator has been determined at room temperature and in a frozen state (?25 °C). It was found that the efficiency varies with the concentration of PEO solution, the molecular weight of PEO, and especially with the temperature. When the UV cross‐linking was performed in the frozen state, porous hydrogels with very high yield of gel fraction (above 90%) and high cross‐linking density were obtained. After drying the hydrogels, films of 50–150 μm thickness were prepared. The films swell extremely fast in water and act as asymmetric membranes.

SEM of a dried PEO hydrogel obtained by UV cross‐linking of an aqueous solution at room temperature.  相似文献   


19.
Summary: Blending of the commercial LC‐polyester Rodrun LC‐3000 with the bisphenol‐A‐diglycidyl ether based diepoxide DOW D.E.R.330 alone and with the mixture of the diamine (MCDEA) and D.E.R.330 by means of a twin‐screw extruder has been investigated. Conditions to suppress curing of epoxide and amine during blending have been established. Due to the very low solubility of Rodrun in the diepoxide only LCP‐rich blends with a minimum content of 60 wt.‐% Rodrun could be obtained. The blends were investigated by SEM and thermal analysis (DSC, DMTA). Binary blends are immiscible while ternary blends appear miscible from DMTA up to 30 wt.‐% of epoxy/amine.

SEM micrograph of Rodrun moulded at 230 °C.  相似文献   


20.
Blends of isotactic poly(propylene) and low‐density polyethylene with different composition ratios were prepared through direct melt compounding on a twin‐screw extruder. The specimens with various geometric configurations were injection‐molded using a gas counterpressure process, using blends to which 0.5 wt.‐% of a blowing agent was added. The influence of blend composition and specimen geometry on the structure and morphology of the samples was investigated by SEM and WAXS. The thermal behavior of the blends was analyzed by DSC. It was found that the morphology of each region depended on the composition ratio and specimen geometry.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号