首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system.  相似文献   

2.
In this paper, we present a robust actuator fault‐tolerant control strategy for constrained linear systems in the presence of bounded state and input disturbances. The scheme is based on a bank of state estimators that match different fault situations that can occur in the system. A fault detection and isolation unit verifies that suitable residual variables lie inside pre‐computed sets and selects the estimate that matches the current plant behaviour. A bank of robustly stabilizing tube‐based model predictive control laws is designed, each associated to a fault scenario, and the appropriate controller is selected among them by using the information provided by the fault detection and isolation module. By means of ‘tubes’ of trajectories, we ensure robust closed‐loop exponential stability of the constrained system and good performance in the fault‐free case and under the occurrence of abrupt actuator faults, including actuator outage and loss of effectiveness by an unknown amount. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, the synthesis of fault tolerant control (FTC) for stochastic stability and H performance is studied. Occurrence of faults in the system is governed by a Markov Chain, so the open-loop system is modelled as a linear system with Markovian jumping parameters. The fault detection and isolation (FDI) decision is modelled as another random process that will indicate the fault mode after an exponentially distributed random delay. This stochastic formulation of FTC concerns the random nature of faults and the effect of random fault detection delay on the overall system, and can be regarded as an extension to the traditional reconfigurable control problem. In this paper, output feedback controllers are designed using an iterative LMI algorithm for mean exponential stability (MES) and the H performance. Model uncertainties and external disturbance are also considered in the robust design.  相似文献   

4.
This paper is concerned with the problem of H fuzzy controller synthesis for a class of discrete‐time nonlinear active fault‐tolerant control systems (AFTCSs) in a stochastic setting. The Takagi and Sugeno (T–S) fuzzy model is employed to exactly represent a nonlinear AFTCS. For this AFTCS, two random processes with Markovian transition characteristics are introduced to model the failure process of system components and the fault detection and isolation (FDI) decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the state of the failure process. A non‐parallel distributed compensation (non‐PDC) scheme is adopted for the design of the fault‐tolerant control laws. The resulting closed‐loop fuzzy system is the one with two Markovian jump parameters. Based on a stochastic fuzzy Lyapunov function (FLF), sufficient conditions for the stochastic stability and H disturbance attenuation of the closed‐loop fuzzy system are first derived. A linear matrix inequality (LMI) approach to the fuzzy control design is then developed. Moreover, a suboptimal fault‐tolerant H fuzzy controller is given in the sense of minimizing the level of disturbance attenuation. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We present a fault tolerant control strategy based on a new principle for actuator fault diagnosis. The scheme employs a standard bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with distinctive dynamics when an estimator matches the current fault situation of the plant. Based on the information from each observer, a fault detection and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate control law from a bank of controllers, each of them designed to stabilise and achieve reference tracking for one of the given fault models. The main contribution of this article is to propose a new FDI principle which exploits the separation of sets that characterise healthy system operation from sets that characterise transitions from healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-controller scheme.  相似文献   

6.
In this paper, a fault‐tolerant switching control strategy is implemented on a magnetic levitation (MAGLEV) system. Two sensors are embedded in the MAGLEV system and their measurements used by two independent estimators. Each sensors–estimator combination, together with a feedback controller can levitate and stabilize a 1‐in steel ball at a desired position in the air. The paper focuses on the design and testing of a switching scheme which, at each instant of time, selects the sensors–estimator combination that provides the best closed loop performance based on a chosen criterion. Theoretical results on the system linearization around an operating point ensure local closed‐loop stability and good performance under the occurrence of an abrupt fault in one of the plant sensors. Experimental results are provided which confirm the fault‐tolerant capabilities of the strategy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a new fault tolerant controller design method for a class of interconnected non‐Gaussian stochastic distribution system with boundary conditions. In order to obtain the fault estimation value, an observer based fault detection and fault diagnosis algorithms are presented at first, then a collaborative fault tolerant controller is designed based on the adaptive control strategy. Different from most of the existing fault tolerant controllers, when fault occurs the controller need to be reconstructed is for the healthy subsystem in this paper. That is to say, the fault is compensated not by the faulty subsystem itself but by the healthy one. The proposed method is used to a simulation example for demonstration, and the effectiveness is verified.  相似文献   

8.
In this paper, a nonlinear sliding mode observer, along with a long range linear predictor, is presented for fault tolerant control of a steer by wire system. The long‐range predictor is based on Diophantine identity aimed at improving the fault detection efficiency. The overall predictive fault tolerant control strategy was then implemented and validated on a steer by a wire hardware in loop bench. The experimental results show that the overall robustness of the steer by wire system was not sacrificed through the usage of analytical redundancy for sensors along with the designed fault detection, isolation, and identification algorithm. Moreover, the experimental results indicated that the fault detection speed is improved using the proposed analytical redundancy‐based algorithms for both attenuating and amplifying type faults. The proposed fault detection algorithm was also found to be robust against a wide range of fault types.  相似文献   

9.
In highly automated aerospace and industrial systems where maintenance and repair cannot be carried out immediately, it is crucial to design control systems capable of ensuring desired performance when taking into account the occurrence of faults/failures on a plant/process; such a control technique is referred to as fault tolerant control (FTC). The control system processing such fault tolerance capability is referred to as a fault tolerant control system (FTCS). The objective of FTC is to maintain system stability and current performance of the system close to the desired performance in the presence of system component and/or instrument faults; in certain circumstances a reduced performance may be acceptable. Various control design methods have been developed in the literature with the target to modify or accommodate baseline controllers which were originally designed for systems operating under fault-free conditions. The main objective of this article is to develop a novel FTCS design method, which incorporates both reliability and dynamic performance of the faulty system in the design of a FTCS. Once a fault has been detected and isolated, the reconfiguration strategy proposed in this article will find possible structures of the faulty system that best preserve pre-specified performances based on on-line calculated system reliability and associated costs. The new reconfigured controller gains will also be synthesised and finally the optimal structure that has the ‘best’ control performance with the highest reliability will be chosen for control reconfiguration. The effectiveness of this work is illustrated by a heating system benchmark used in a European project entitled intelligent Fault Tolerant Control in Integrated Systems (IFATIS EU-IST-2001-32122).  相似文献   

10.
The objective of this paper is to develop performance‐based fault detection (FD) and fault‐tolerant control (FTC) schemes for a class of nonlinear systems. To this end, the representation forms of nonlinear systems with faults and the controller parameterization forms are studied first with the aid of the nonlinear factorization technique. Then, based on the stable kernel representation and the stable image representation of the faulty nonlinear system, the stability performance of the closed‐loop system is addressed, respectively. The so‐called fault‐tolerant margin is defined to evaluate the system fault‐tolerant ability. On this basis, two performance‐based FD schemes are developed aiming at detecting the system performance degradation caused by system faults. Furthermore, to recover the system stability performance, two performance‐based FTC strategies are proposed based on the information provided by the FD unit. In the end, a numerical example and a case study on the three‐tank system are given to demonstrate the proposed results.  相似文献   

11.
In this paper we combine a set‐separation approach to fault detection and identification (FDI), recently proposed by the authors, with the virtual actuator approach to controller reconfiguration of Steffen and Lunze. The FDI approach is based on the separation of sets that characterize the system operation under different actuator fault situations that can occur in the plant. The derivation of these sets takes into account the closed‐loop system reconfigured by means of the virtual actuator under all considered actuator faults. Analytic conditions in terms of closed‐loop system parameters and bounds on external signals can be deduced from the required set separation which, in turn, guarantees closed‐loop stability, setpoint tracking, and optimal performance properties of the scheme under all considered fault situations. Thus, the main contribution of this paper is twofold. First, it provides an integrated strategy for fault tolerant control by adapting two existing techniques for FDI and for controller reconfiguration to work in combined form. Second, and more importantly, it endows the resulting combined scheme with guaranteed closed‐loop stability, setpoint tracking and optimal performance properties under actuator faults and in the presence of disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a retrofit fault‐tolerant tracking control (FTTC) design method with application to an unmanned quadrotor helicopter (UQH). The proposed retrofit fault‐tolerant tracking controller is developed to accommodate loss‐of‐effectiveness faults in the actuators of UQH. First, a state feedback tracking controller acting as the normal controller is designed to guarantee the stability and satisfactory performance of UQH in the absence of actuator faults, while actuator dynamics of UQH are also considered in the controller design. Then, a retrofit control mechanism with integration of an adaptive fault estimator and an adaptive fault compensator is devised against the adverse effects of actuator faults. Next, the proposed retrofit FTTC strategy, which is synthesized by the normal controller and an additional reconfigurable fault compensating mechanism, takes over the control of the faulty UQH to asymptotically stabilize the closed‐loop system with an acceptable performance degradation in the presence of actuator faults. Finally, both numerical simulations and practical experiments are conducted in order to demonstrate the effectiveness of the proposed FTTC methodology on the asymptotic convergence of tracking error for several combinations of loss‐of‐effectiveness faults in actuators.  相似文献   

13.
In this paper, we present a robust fault‐tolerant control scheme for constrained multisensor linear parameter‐varying systems, subject to bounded disturbances, that utilises multiple sensor fusion. The closed‐loop scheme consists of a tube model predictive control‐based feedback tracking controller and sensor‐estimate fusion strategy, which allows for the reintegration of previously faulty sensors. The active fault‐tolerant fusion‐based mechanism tracks the healthy‐faulty transitions of suitable residual variables by means of set separation and precomputed transition times. The sensor‐estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, robust preservation of closed‐loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault‐tolerant control strategy.  相似文献   

14.
In this paper, a class of fractional‐order nonlinear systems are considered in the presence of actuator faults. A novel fault tolerant control scheme based on disturbance observer has been presented, where the actuator faults are considered as the system disturbance and can be approximated by the proposed disturbance observer. The developed fault tolerant control guarantees the convergence of the closed‐loop system and the output tracking performance. Finally, a simulation example is presented to verify the effectiveness of the new method.  相似文献   

15.
This paper presents, from a practical viewpoint, an investigation of real-time actuator fault detection, propagation and accommodation in distillation columns. Addressing faults in industrial processes, coupled with the growing demand for higher performance, improved safety and reliability necessitates implementation of less complex alternative control strategies in the events of malfunctions in actuators, sensors and or other system components. This work demonstrates frugality in the design and implementation of fault tolerant control system by integrating fault detection and diagnosis techniques with simple active restructurable feedback controllers and with backup feedback signals and switchable reference points to accommodate actuator fault in distillation columns based on a priori assessed control structures. A multivariate statistical process monitoring based fault detection and diagnosis technique through dynamic principal components analysis is integrated with one-point control or alternative control structure for prompt and effective fault detection, isolation and accommodation. The work also investigates effects of disturbances on fault propagation and detection. Specifically, the reflux and vapor boil-up control strategy used for a binary distillation column during normal operation is switched to one point control of the more valued product by utilizing the remaining healthy actuator. The proposed approach was implemented on two distillation processes: a simulated methanol-water separation column and the benchmark Shell standard heavy oil fractionation process to assess its effectiveness.  相似文献   

16.
In this paper, the problem of robust adaptive fault‐tolerant tracking control with time‐varying performance bounds is investigated for a class of linear systems subject to parameter uncertainties, external disturbances and actuator failures. In order to ensure the norm of the tracking error less than the user‐defined time‐varying performance bounds, we propose a new control strategy which is predicated on the generalized restricted potential function. Compared with the existing result, a novel method which provides two design freedoms is developed to reduce the tracking error. According to the online estimation information provided by adaptive mechanism, a fault‐tolerant tracking control method guaranteeing time‐varying performance bounds is developed for robust tracking of reference model. It is shown that the closed‐loop signals are bounded and the tracking error within an a priori given, time‐varying performance bounds. A simulation result is provided to demonstrate the efficacy of the proposed fault‐tolerant tracking control method.  相似文献   

17.
18.
本文针对运行控制系统,建立了运行优化控制过程的双层结构模型.在此基础上,通过建立相应的自适应故障诊断算法,提出了保证在系统有故障和干扰时仍能渐近优化指标的集中式容错控制方法,利用李雅普诺夫稳定性理论分析了自适应故障诊断算法的构建.已证明:该方法通过调整已优化的设定值来保证在回路控制层出现故障时整个运行控制仍可收敛到其原有的优化控制效果.该方法属于非完备容错控制,仿真结果验证了所提方法的有效性.  相似文献   

19.
Fault detection and isolation (FDI) filters are typically synthesized for open‐loop or closed‐loop systems. The controller affects the FDI filter performance in the closed‐loop system. FDI filter performance and closed‐loop controller–filter interaction in the presence of uncertain dynamics were investigated as was the role of controller robustness on the FDI filter performance. The NASA Generic Transport Model aircraft was considered as a motivating application. Multiple example scenarios were presented to highlight the utility of FDI filter performance metrics. For example, comparing fault detection performance of different filters under identical uncertain plant dynamics and controller, the effect of different controllers on the FDI filter performance, and the effect of model uncertainty on filter performance. The Generic Transport Model aircraft FDI filter results are validated using worst‐case analysis and linear simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A unified fault detection and isolation (FDI) and fault tolerant control (FTC) strategy for the diesel engine's air management system has been formulated. Diesel engines need to comply with the strict emission requirements for which they are equipped with specialized sub‐systems for the purpose, such as the variable geometry turbo (VGT) charger and exhaust gas recirculation (EGR). Hardware‐based controls tend to make the system more complex and prone to structured and unstructured faults. This calls for an advanced FTC technique that can ensure desired level of emissions even in the presence of minor system malfunctions. The scheme proposed in this paper detects, isolates and estimates the structured faults and minimizes their effects by re‐positioning the actuators using integral sliding mode (ISM) control. Estimating the magnitude of structured faults help to reduce the ISM controller gains, eventually reducing the chattering. The stability of the system is analyzed using Lyapunov stability criterion. Simulations have been performed using fully validated industrial scale model of a diesel engine to elucidate the effectiveness of our scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号