首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Stochastic seismic finite element analysis of a cable-stayed bridge whose material properties are described by random fields is presented in this paper. The stochastic perturbation technique and Monte Carlo simulation (MCS) method are used in the analyses. A summary of MCS and perturbation based stochastic finite element dynamic analysis formulation of structural system is given. The Jindo Bridge, constructed in South Korea, is chosen as a numerical example. The Kocaeli earthquake in 1999 is considered as a ground motion. During the stochastic analysis, displacements and internal forces of the considered bridge are obtained from perturbation based stochastic finite element method (SFEM) and MCS method by changing elastic modulus and mass density as random variable. The efficiency and accuracy of the proposed SFEM algorithm are evaluated by comparison with results of MCS method. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.  相似文献   

2.
A stochastic response surface method (SRSM) which has been previously proposed for problems dealing only with random variables is extended in this paper for problems in which physical properties exhibit spatial random variation and may be modeled as random fields. The formalism of the extended SRSM is similar to the spectral stochastic finite element method (SSFEM) in the sense that both of them utilize Karhunen–Loeve (K–L) expansion to represent the input, and polynomial chaos expansion to represent the output. However, the coefficients in the polynomial chaos expansion are calculated using a probabilistic collocation approach in SRSM. This strategy helps us to decouple the finite element and stochastic computations, and the finite element code can be treated as a black box, as in the case of a commercial code. The collocation-based SRSM approach is compared in this paper with an existing analytical SSFEM approach, which uses a Galerkin-based weighted residual formulation, and with a black-box SSFEM approach, which uses Latin Hypercube sampling for the design of experiments. Numerical examples are used to illustrate the features of the extended SRSM and to compare its efficiency and accuracy with the existing analytical and black-box versions of SSFEM.  相似文献   

3.
The main idea is a dual mathematical formulation and computational implementation of the iterative stochastic perturbation‐based finite element method for both linear and nonlinear problems in solid mechanics. A general‐order Taylor expansion with random coefficients serves here for the iterative determination of the basic probabilistic characteristics, where linearization procedure widely applicable in stochastic perturbation technique is replaced with the iterative one. The expected values and, in turn, the variances are derived first, and then, they are substituted into the equations for higher central probabilistic moments and additional probabilistic characteristics. The additional formulas for up to the fourth‐order probabilistic characteristics are derived thanks to the 10th‐order Taylor expansion. Computational implementation of this idea in the stochastic finite element method is provided by using the direct differentiation method and, independently, the response function method with polynomial basis. Numerical experiments include the simple tension of the elastic bar, nonlinear elasto‐plastic analysis of the aluminum 2D truss, and solution to the homogenization problem of periodic fiber‐reinforced composite with random elastic properties. The expected values, coefficients of variation, skewness, and kurtosis of the structural response determined via this iterative scheme are contrasted with these estimated by the Monte Carlo simulation as well as with the results of the semi‐analytical probabilistic technique following the response function method itself. Although the entire methodology is illustrated here by using the Gaussian variables where all odd‐order terms simply vanish, it can be extended towards non‐Gaussian processes as well and completed with all the perturbation orders. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Comparison of finite element reliability methods   总被引:7,自引:0,他引:7  
The spectral stochastic finite element method (SSFEM) aims at constructing a probabilistic representation of the response of a mechanical system, whose material properties are random fields. The response quantities, e.g. the nodal displacements, are represented by a polynomial series expansion in terms of standard normal random variables. This expansion is usually post-processed to obtain the second-order statistical moments of the response quantities. However, in the literature, the SSFEM has also been suggested as a method for reliability analysis. No careful examination of this potential has been made yet. In this paper, the SSFEM is considered in conjunction with the first-order reliability method (FORM) and with importance sampling for finite element reliability analysis. This approach is compared with the direct coupling of a FORM reliability code and a finite element code. The two procedures are applied to the reliability analysis of the settlement of a foundation lying on a randomly heterogeneous soil layer. The results are used to make a comprehensive comparison of the two methods in terms of their relative accuracies and efficiencies.  相似文献   

5.
In this paper, a moving-window micromechanics technique, Monte Carlo simulation, and finite element analysis are used to assess the effects of microstructural randomness on the local stress response of composite materials. The randomly varying elastic properties are characterized in terms of a field of local effective elastic constitutive matrices using a moving-window technique based on a finite element model of a given digitized composite material microstructure. Once the fields are generated, estimates of the random properties are obtained for use as input to a simulation algorithm that was developed to retain spectral, correlation, and non-Gaussian probabilistic characteristics. Rapidly generated Monte Carlo simulations of the constitutive matrix fields are used in a finite element analysis to create a series of local stress fields associated with the random material sample under uniaxial tension. This series allows estimation of the statistical variability in the local stress response for the random composite. The identification of localized extreme stress deviations from those of the aggregate or effective properties approach highlight the importance of modeling the stochastic variability of the microstructure.  相似文献   

6.
When analyzing the behavior of composite materials under various loading conditions, the assumption is generally made that the behavior due to randomness in the material can be represented by a homogenized, or effective, set of material properties. This assumption may be valid when considering displacement, average strain, or even average stress of structures much larger than the inclusion size. The approach is less valid, however, when considering either behavior of structures of size at the scale of the inclusions or local stress of structures in general. In this paper, Monte Carlo simulation is used to assess the effects of microstructural randomness on the local stress response of composite materials. In order to achieve these stochastic simulations, the mean, variance and spectral density functions describing the randomly varying elastic properties are required as input. These are obtained here by using a technique known as moving-window generalized method of cells (moving-window GMC). This method characterizes a digitized composite material microstructure by developing fields of local effective material properties. Once these fields are generated, it is straightforward to obtain estimates of the associated probabilistic parameters required for simulation. Based on the simulated property fields, a series of local stress fields, associated with the random material sample under uniaxial tension, is calculated using finite element analysis. An estimation of the variability in the local stress response for the given random composite is obtained from consideration of these simulations.  相似文献   

7.
The purpose of this paper is to present a mathematical formulation and numerical analysis for a homogenization problem of random elastic composites with stochastic interface defects. The homogenization of composites so defined is carried out in two steps: (i) probabilistic averaging of stochastic discontinuities in the interphase region, (ii) probabilistic homogenization by extending the effective modules method to media random in the micro‐scale. To obtain such an approach the classical mathematical homogenization method is formulated for n‐component composite with random elastic components and implemented in the FEM‐based computer program. The article contains also numerous computational experiments illustrating stochastic sensitivity of the model to interface defects parameters and verifying statistical convergence of probabilistic simulation procedure. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
The main aim of this paper is a development of the semi‐analytical probabilistic version of the finite element method (FEM) related to the homogenization problem. This approach is based on the global version of the response function method and symbolic integral calculation of basic probabilistic moments of the homogenized tensor and is applied in conjunction with the effective modules method. It originates from the generalized stochastic perturbation‐based FEM, where Taylor expansion with random parameters is not necessary now and is simply replaced with the integration of the response functions. The hybrid computational implementation of the system MAPLE with homogenization‐oriented FEM code MCCEFF is invented to provide probabilistic analysis of the homogenized elasticity tensor for the periodic fiber‐reinforced composites. Although numerical illustration deals with a homogenization of a composite with material properties defined as Gaussian random variables, other composite parameters as well as other probabilistic distributions may be taken into account. The methodology is independent of the boundary value problem considered and may be useful for general numerical solutions using finite or boundary elements, finite differences or volumes as well as for meshless numerical strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The main aim of this paper is to present an algorithm and the solution to the nonlinear plasticity problems with random parameters. This methodology is based on the finite element method covering physical and geometrical nonlinearities and, on the other hand, on the generalized nth order stochastic perturbation method. The perturbation approach resulting from the Taylor series expansion with uncertain parameters is provided in two different ways: (i) via the straightforward differentiation of the initial incremental equation and (ii) using the modified response surface method. This methodology is illustrated with the analysis of the elasto-plastic plane truss with random Young’s modulus leading to the determination of the probabilistic moments by the hybrid stochastic symbolic-finite element method computations.  相似文献   

10.
In this article, a unified framework is introduced for robust structural topology optimization for 2D and 3D continuum and truss problems. The uncertain material parameters are modelled using a spatially correlated random field which is discretized using the Karhunen–Loève expansion. The spectral stochastic finite element method is used, with a polynomial chaos expansion to propagate uncertainties in the material characteristics to the response quantities. In continuum structures, either 2D or 3D random fields are modelled across the structural domain, while representation of the material uncertainties in linear truss elements is achieved by expanding 1D random fields along the length of the elements. Several examples demonstrate the method on both 2D and 3D continuum and truss structures, showing that this common framework provides an interesting insight into robustness versus optimality for the test problems considered.  相似文献   

11.
Using non-orthogonal polynomial expansions, a recursive approach is proposed for the random response analysis of structures under static loads involving random properties of materials, external loads, and structural geometries. In the present formulation, non-orthogonal polynomial expansions are utilized to express the unknown responses of random structural systems. Combining the high-order perturbation techniques and finite element method, a series of deterministic recursive equations is set up. The solutions of the recursive equations can be explicitly expressed through the adoption of special mathematical operators. Furthermore, the Galerkin method is utilized to modify the obtained coefficients for enhancing the convergence rate of computational outputs. In the post-processing of results, the first- and second-order statistical moments can be quickly obtained using the relationship matrix between the orthogonal and the non-orthogonal polynomials. Two linear static problems and a geometrical nonlinear problem are investigated as numerical examples in order to illustrate the performance of the proposed method. Computational results show that the proposed method speeds up the convergence rate and has the same accuracy as the spectral finite element method at a much lower computational cost, also, a comparison with the stochastic reduced basis method shows that the new method is effective for dealing with complex random problems.  相似文献   

12.
Nouy and Clement introduced the stochastic extended finite element method to solve linear elasticity problem defined on random domain. The material properties and boundary conditions were assumed to be deterministic. In this work, we extend this framework to account for multiple independent input uncertainties, namely, material, geometry, and external force uncertainties. The stochastic field is represented using the polynomial chaos expansion. The challenge in numerical integration over multidimensional probabilistic space is addressed using the pseudo-spectral Galerkin method. Thereafter, a sensitivity analysis based on Sobol indices using the derived stochastic extended Finite Element Method solution is presented. The efficiency and accuracy of the proposed novel framework against conventional Monte Carlo methods is elucidated in detail for a few one and two dimensional problems.  相似文献   

13.
This paper focuses on the simulation of random fields on random domains. This is an important class of problems in fields such as topology optimization and multiphase material analysis. However, there is still a lack of effective methods to simulate this kind of random fields. To this end, we extend the classical Karhunen–Loève expansion (KLE) to this class of problems, and we denote this extension as stochastic Karhunen–Loève expansion (SKLE). We present three numerical algorithms for solving the stochastic integral equations arising in the SKLE. The first algorithm is an extension of the classical Monte Carlo simulation (MCS), which is used to solve the stochastic integral equation on each sampled domain. However, such approach demands remeshing each sampled domain and solving the corresponding integral equation, which can become computationally very demanding. In the second algorithm, a domain transformation is used to map the random domain into a reference domain, and only one mesh for the reference domain is required. In this way, remeshing different sample realizations of the random domain is avoided and much computational effort is thus saved. MCS is then adopted to solve the corresponding stochastic integral equation. Further, to avoid the computational effort of MCS, the third algorithm proposed in this contribution involves a reduced-order method to solve the stochastic integral equation efficiently. In this third algorithm, stochastic eigenvectors are represented as a sum of products of unknown random variables and deterministic vectors, where the deterministic vectors are efficiently computed by solving deterministic eigenvalue problems. The random variables and stochastic eigenvalues that appear in this third algorithm are calculated by a reduced-order stochastic eigenvalue problem constructed by the obtained deterministic vectors. Based on the obtained stochastic eigenvectors, the target random field is then simulated and reformulated as a classical KLE-like representation. Finally, three numerical examples are presented to demonstrate the performance of the proposed methods.  相似文献   

14.
B PASCUAL  S ADHIKARI 《Sadhana》2012,37(3):319-340
The stochastic finite element analysis of elliptic type partial differential equations is considered. A reduced method of the spectral stochastic finite element method using polynomial chaos is proposed. The method is based on the spectral decomposition of the deterministic system matrix. The reduction is achieved by retaining only the dominant eigenvalues and eigenvectors. The response of the reduced system is expanded as a series of Hermite polynomials, and a Galerkin error minimization approach is applied to obtain the deterministic coefficients of the expansion. The moments and probability density function of the solution are obtained by a process similar to the classical spectral stochastic finite element method. The method is illustrated using three carefully selected numerical examples, namely, bending of a stochastic beam, flow through porous media with stochastic permeability and transverse bending of a plate with stochastic properties. The results obtained from the proposed method are compared with classical polynomial chaos and direct Monte Carlo simulation results.  相似文献   

15.
This paper is the second of a two-part series that constitutes an effort to establish spectral- and probability-distribution-free upper bounds on various probabilistic indicators of the response of stochastic systems. The concept of the generalized variability response function is introduced and used with the aid of associated fields to extend the upper bounds established in the first paper for the special case of material property variations modeled by random variables to more general problems involving random fields. Specifically, a hierarchy of spectral- and probability-distribution-free upper bounds on the mean, variance, and exceedance values of the response of stochastic systems is established when only the coefficient of variation and lower limit of the stochastic material properties are known. Furthermore, a hierarchy of probability-distribution-free upper bounds on these quantities is established when the spectral density function describing the stochastic material properties is known in addition to the coefficient of variation and the lower limit.  相似文献   

16.
Stochastic analysis of structure with non-Gaussian material property and loading in the framework of polynomial chaos (PC) is considered. A new approach for the solution of stochastic mechanics problem with random coefficient is presented. The major focus of the method is to consider reduced size of expansion in an iterative manner to overcome the problem of large system matrix in conventional PC expansion. The iterative method is based on orthogonal expansion of stochastic responses and generation of an iterative PC based on the responses of the previous iteration. The polynomials are evaluated using Gram-Schmidt orthogonalization process. The numbers of random variables in PC expansion are reduced by considering only the dominant components of the response characteristics, which is evaluated using Karhunen-Loève (KL) expansion. In case of random material field problem, the KL expansion is used to discretize and simulate the non-Gaussian random field. Independent component analysis (ICA) is carried out on the non-Gaussian KL random variables to minimize statistical dependence. The usefulness of the proposed method in terms of accuracy and computational efficiency is examined. From the numerical analysis of three different types of structural mechanics problems, the proposed iterative method is observed to be computationally more efficient and accurate than conventional PC method for solution of linear elastostatic structural mechanics problems.  相似文献   

17.
The research work extends the scaled boundary finite element method to non‐deterministic framework defined on random domain wherein random behaviour is exhibited in the presence of the random‐field uncertainties. The aim is to blend the scaled boundary finite element method into the Galerkin spectral stochastic methods, which leads to a proficient procedure for handling the stress singularity problems and crack analysis. The Young's modulus of structures is considered to have random‐field uncertainty resulting in the stochastic behaviour of responses. Mathematical expressions and the solution procedure are derived to evaluate the statistical characteristics of responses (displacement, strain, and stress) and stress intensity factors of cracked structures. The feasibility and effectiveness of the presented method are demonstrated by particularly chosen numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is the first of a two-part series that constitutes an effort to establish spectral- and probability-distribution-free upper bounds on various probabilistic indicators of the response of stochastic systems. In this first paper, the concept of the variability response function (VRF) is discussed in some detail with respect to its strengths and its limitations. It is the first time that various limitations of the classical VRF are discussed. The concept of associated fields is then introduced as a potential tool for overcoming the limitations of the classical VRF. As a first step, the special case of material property variations modeled by a single random variable is examined. Specifically, beam structures with the elastic modulus being the only stochastic property are studied. Results yield a hierarchy of upper bounds on the mean, variance and exceedance values of the response displacement, obtained from zero-mean U-shaped beta-distributed random variables with prescribed standard deviation and lower limit. In the second paper that follows, the concept of the generalized variability response function is introduced and used with the aid of associated fields to extend the upper bounds established in this paper to more general problems involving stochastic fields.  相似文献   

19.
A load space formulation for calculating the failure probability of complex structures for which the limit state functions are implicit is described in this paper. This formulation is used in conjunction with probabilistic finite element (PEE) analysis and employs a directional simulation to calculate the structural reliability. Apart from the advantage that a lower order space is used, the main advantage of the load space formulation proposed in this paper is that the number of inversions of the structural stiffness matrix and/or its gradients with respect to the material property random variables is reduced dramatically when compared with the usual Monte Carlo simulation (MCS) method. When used in a finite element reliability analysis, this procedure can save significant amounts of CPU time. Numerical examples are presented to show the efficiency and accuracy of the proposed approach.  相似文献   

20.
We propose two different approaches generalizing the Karhunen–Loève series expansion to model and simulate multi-correlated non-stationary stochastic processes. The first approach (muKL) is based on the spectral analysis of a suitable assembled stochastic process and yields series expansions in terms of an identical set of uncorrelated random variables. The second approach (mcKL) relies on expansions in terms of correlated sets of random variables reflecting the cross-covariance structure of the processes. The effectiveness and the computational efficiency of both muKL and mcKL is demonstrated through numerical examples involving Gaussian processes with exponential and Gaussian covariances as well as fractional Brownian motion and Brownian bridge processes. In particular, we study accuracy and convergence rates of our series expansions and compare the results against other statistical techniques such as mixtures of probabilistic principal component analysis. We found that muKL and mcKL provide an effective representation of the multi-correlated process that can be readily employed in stochastic simulation and dimension reduction data-driven problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号