首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc glycerolate (ZnGly) was prepared and used as a poly(vinyl chloride) (PVC) thermal stabilizer in this work. ZnGly was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermogravimetry (TGA), and transmission electron microscopy (TEM). Visual color evolution and thermal stability time at 180°C were used to examine the stabilizing efficiency of the samples. The thermal stability of PVC was significantly enhanced through adding ZnGly or ZnGly with lanthanum stearate (LaSt3). Compared with zinc stearate (ZnSt2), it was demonstrated the initial color stability was markedly improved and the thermal stability time was obviously extended by adding ZnGly. The thermal stability time of ZnGly was threefold than ZnSt2. In comparison with CaSt2/ZnSt2, the extent of coloration of PVC samples was significantly inhibited though adding LaSt3/ZnGly. It was verified that the appropriate percents of ZnGly in the mixture were between 25 and 50%. A possible mechanism for the stabilizing efficiency of ZnGly was also proposed. The stabilizing efficiency was attributed to the stabilizer's ability to absorb hydrogen chloride and replace the labile chlorine atoms on PVC chains. Moreover, the dynamic thermogravimetric analysis was used to confirm that combination of LaSt3 with ZnGly presented an obvious improvement of stability on thermal degradation of PVC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
詹旭亮  祝保林 《应用化工》2012,41(6):975-979,983
通过接枝共聚工艺,对纳米水滑石进行表面处理,生成无机核、有机壳的核-壳结构,研究了经表面处理和未经表面处理的水滑石对PVC复合材料力学性能、耐热性能、阻燃性能的影响。结果表明,经表面处理后的水滑石对复合材料力学性能的影响要好于未改性的水滑石;未经处理的水滑石对复合材料维卡软化温度有较大的提高;加入水滑石后,复合材料阻燃性能得到较大提高。  相似文献   

3.
Pristine diatomite was first purified by acid treatment and then modified with γ‐methacryloxy propyl trimethoxysilane molecule (KH570) to introduce hydrophobic chains on the surface of acid‐treated diatomite. Fourier‐transform infrared spectroscopy and thermogravimetric analysis (TGA) indicated that the silane coupling agent (KH570) was successfully grafted on the diatomite through covalent bonding. The digital photos showed that the silanization process changed the surface property of the diatomite. The poly(vinyl chloride) (PVC)/pristine diatomite and PVC/modified diatomite composites were prepared via two‐roll mill. The thermal stability and mechanical properties of PVC composites were investigated by TGA, mechanical properties tests, and dynamic mechanical analysis. The results showed that the thermal stability of the composites improved and maximum weight loss temperature (Tmax) of the PVC composite with 1 phr modified diatomite was about 20°C higher than that of PVC composite without diatomite. The PVC/modified diatomite composites exhibited better mechanical properties owing to the stronger interfacial interaction between PVC matrix and modified diatomite. But the impact strength reduced sharply when the addition of diatomite was more than 1 phr. The reason of the phenomenon is that the diatomite plays the role of defects in PVC and it works against the absorption of impact strength energy. It was proved by the results of scanning electron microscopy. J. VINYL ADDIT. TECHNOL., 25:E39–E47, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
选择不同的方法对纳米CaCO3进行表面改性,研究了表面处理剂对CaCO3/PVC纳米复合材料界面结合强度、力学性能及加工性能的影响。通过正交实验设计得到了力学性能最佳时的制备条件:表面处理剂选用钛酸酯偶联剂,其用量4%(质量分数),纳米CaCO3用量15%(质量分数)。极差分析结果表明,对冲击强度而言,主要影响因素为表面处理剂用量;扫描电镜显示,钛酸酯偶联剂处理可使纳米CaCO3颗粒在PVC基体中达到良好分散,并提高其界面结合强度;流变性能研究表明,经钛酸酯处理的纳米CaCO3填充PVC具有更低的平衡转矩。  相似文献   

5.
A free-radical mechanism by which lead compounds are thought to inhibit thermal dehydrochlorination of polyvinyl chloride (PVC) is described. This mechanism is called “true stabilization” in order to distinguish it from simple hydrogen chloride (HCl) scavenging, which is a well-known and sometimes important function of all primary stabilizers used in PVC. In true stabilization, it is thought that stearate or other aliphatic carboxylate groups (initially from lubricants) react with reservoirs of basic lead compound such as the carbonates, dibasic lead phosphite, the phthalates, or the sulfates, to give mobile carboxylates of lead. These latter salts then react with chlorine atoms released by the hot PVC, giving chlorides of lead and aliphatic carboxylate free-radicals. Hence the chlorine atoms are trapped and unable to propagate free-radical dehydrochlorination. Also it is thought that the aliphatic carboxylate free-radicals esterify PVC molecules at methylenic carbon atoms (from which hydrogen atoms have been removed by chlorine atoms giving HCl and free-radical sites in the polymer chain). Thus, unpaired electrons on the carboxylate free-radicals and on these methylenic carbon atoms in the PVC molecules are paired, so that the neighboring chlorine atoms in polymer chloromethylenic groups are stabilized. Hence loss of chlorine atoms in the free-radical dehydrochlorination of PVC is prevented. The pendant aliphatic carboxylate groups dissociate from the PVC molecules taking chloromethylenic hydrogen atoms to form acid molecules, and leaving chlorine atoms in relatively stable vinyl type groups. The aliphatic carboxylic acids react with more of the basic lead compound reservoir, giving mobile carboxylates of lead which can enter further reactions as just described. Thus, the true stabilizing mechanism is continuous and cyclic, while the reservoir of basic lead is available, and the PVC thermal dehydrochlorination will be retarded to almost negligible rates in favorable circumstances. It is thought that the behaviors of metal soaps and of organo-tin stabilizers may be encompassed within the general true stabilization concepts of free-radical exchanges and PVC esterifications described above. In these ways they also would retard PVC thermal dehydrochlorination. However, they are neutral compounds and have no basic reservoir which can react with carboxylic acids in the manner described above for lead stabilizers. Hence they are not able to confer long term stability on PVC in the way that basic lead stabilizing regimes do.  相似文献   

6.
研究了环氧大豆油(ESO)、亚磷酸酯(Phosphite)、β二酮(β-diketone)和水滑石(LDHs) 4种辅助稳定剂和钙锌(Ca/Zn)主稳定剂复配对聚氯乙烯(PVC)软制品的热稳定性、力学性能、烟密度等性能的影响。结果表明,与其他辅助热稳定剂相比,LDHs和Ca/Zn稳定剂复配对PVC软制品具有较好的长期热稳定性,并使PVC复合材料的烟密度有所降低。  相似文献   

7.
张邦华  古巨明 《塑料工业》1995,23(2):31-34,25
通过钛酸四异丙酸与甲基丙烯酸甲酯-丙烯酸丁酯-丙烯酸共聚物和第三组分焦磷酸二异辛酯合成出新型大分子钛酸酯偶联剂,处理CaCO3填充聚氯乙烯。对PVC/CaCO3复合体系的形态,动态力学行为和热稳定性进行了研究。结果表明,MTCA可增加PVC与CaCO3之间的相互作用,改善了体系的相态结构,提高了体系的热稳定性和PVC的玻璃化变温度。  相似文献   

8.
Summarized briefly here are some new observations that relate to the polymerization chemistry of vinyl chloride (VC) and to the thermal degradation, thermal stabilization, fire retardance, and smoke suppression of poly(vinyl chloride) (PVC). During polymerization, head-to-head VC emplacement leads to β-chloroalkyl radicals that can transfer chlorine atoms directly to VC. Another mechanism for transfer to monomer is responsible, however, for the polymer molecular-weight reductions that occur at high VC conversions. This transfer process involves the abstraction of methylene hydrogen from the polymer by an ordinary macroradical and the subsequent bimolecular donation of a chlorine atom to VC. The propagation steps of the polymerization do not become diffusion-controlled at VC conversions near 90%, and hydrogen abstraction from the polymer by ordinary macroradicals leads to the structural defects that cause thermal instability. The thermal dehydrochlorination of PVC involves ion pairs or four-center concerted transition states that are highly polarized. Reversible thermal stabilization of the polymer by organic metal salts occurs by the Frye-Horst process, and the reductive coupling of PVC chains may suppress both smoke and flame. This coupling can result from reactions of the polymer with zero- or low-valent transition-metal species that are formed in situ from appropriate additives.  相似文献   

9.
以微晶白云母为原料,以钛酸酯偶联剂NDZ-101为改性剂,对微晶白云母进行改性研究,并将表面改性后的微晶白云母加入聚氯乙烯(PVC)材料中制得微晶白云母/PVC复合材料.测试了改性粉体与石蜡体系的黏度及复合材料的力学性能,并采用扫描电子显微镜测试研究了其微观结构.结果表明,钛酸酯偶联剂NDZ-101能有效改善微晶白云母表面与有机物质的界面结合,并且将经钛酸酯偶联剂NDZ-101改性的微晶白云母加入PVC基体中能提高微晶白云母/PVC复合材料的力学性能,当钛酸酯偶联剂的用量为0.7%、微晶自云母用量为10%时,微晶白云母/PVC复合材料的力学性能最好.  相似文献   

10.
膨胀石墨的表面改性及其在PIR-RPUF中的应用   总被引:3,自引:0,他引:3  
采用聚乙烯醇(PVA)、钛酸酯偶联剂对无卤阻燃剂膨胀石墨(EG)的表面进行了改性,同时将改性EG应用于PIR-RPUF(聚异氰脲酸酯改性聚氨酯泡沫塑料)的阻燃体系中。沉降试验研究表明,表面改性显著提高了EG在PIR-RPUF原料多元醇中的分散稳定性;X-射线光电子能谱(XPS)表面分析指出,改性EG表面存在大量羟基官能团。将改性EG与聚磷酸铵(APP)复合用于阻燃PIR-RPUF,其压缩强度得到相应改善。  相似文献   

11.
In this study, zinc maleate (ZnMA) and zinc oxide (ZnO) complex (ZnMA/ZnO) was prepared by two methods, namely, by the reaction of maleic acid (MAH) with excess ZnO in aqueous solution and by direct mixing of ZnMA and ZnO at 180°C. The chemical structure of the complex was analyzed by X‐ray diffraction, thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. The thermal stabilizing effect of the complex on poly(vinyl chloride) (PVC) was evaluated through static and dynamic stability methods. Compared to calcium and zinc soaps and ZnMA alone, the complex exhibited better thermal stabilizing effect on PVC. The stabilization mechanism was also investigated by ultraviolet–visible spectrometer, FTIR, TGA, and gel content analysis. The results indicated that the complex which involved the replacement of labile chlorine atoms hindered the formation of conjugated double bonds in PVC chains via Diels–Alder reaction, and ZnMA/ZnO complex also exhibited the ability to absorb hydrogen chloride. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41464.  相似文献   

12.
Zinc maleate (ZnMA) and calcium maleate (CaMA) were synthesized by reaction of maleic acid with the corresponding metal oxides and were characterized by X‐ray diffraction, thermal analysis, and Fourier‐transform infrared (FTIR) spectroscopy. The thermal stabilizing effects of ZnMA and CaMA on poly(vinyl chloride) (PVC) were investigated at 180°C in air by a static stability test. The stabilization mechanism of ZnMA and the synergism of ZnMA/CaSt2 (St = stearate) were also studied by UV‐visible and FTIR spectroscopies, as well as a thermal stability test. The PVC with the ZnMA stabilizer exhibited good thermal and color stability caused by the ability of ZnMA to replace the labile chlorine atoms in PVC chains, absorb hydrogen chloride, and react with the polyene intermediates via a Diels–Alder mechanism. The gel content of the PVC/ZnMA samples reached 31% after 2 min of heating and 44% after 10 min, thereby indicating that crosslinking could easily occur with ZnMA, probably owing to catalysis by Zn species. The static and dynamic stability results showed that the synergistic effect of the ZnMA/CaSt2 stabilizer was greater than that of ZnSt2/CaSt2. J. VINYL ADDIT. TECHNOL., 20:1–9, 2014. © 2014 Society of Plastics Engineers  相似文献   

13.
徐守芳 《河南化工》2007,24(12):27-30
采用钛酸酯偶联剂和PMMA接枝方法改性纳米碳酸钙,并采用熔融共混法制备了改性纳米CaCO3增韧PVC(CaCO3/PVC)复合材料,研究了复合材料的力学性能。对比于未处理纳米CaCO,和钛酸酯偶联剂处理纳米CaCO3,PMMA接枝聚合改性纳米CaCO3与基体的相容性最好,增韧PVC复合材料的拉伸强度得到较大幅度提高。  相似文献   

14.
孙水升  张玲  李春忠  曹宏明  周秋玲 《化工学报》2005,56(11):2233-2239
选择了不同的表面处理剂对纳米CaCO3进行表面改性. 研究了不同表面处理剂对CaCO3/PVC纳米复合材料微观结构、界面结合强度、力学性能及加工性能的影响.研究表明,钛酸酯偶联剂处理可使纳米CaCO3颗粒在PVC基体中达到良好分散,明显改善纳米CaCO3颗粒与PVC基体之间的界面结合,并提高其界面结合强度.力学性能和流变性能研究表明,钛酸酯处理的纳米CaCO3填充PVC具有更高的拉伸强度、冲击强度以及更低的平衡转矩, 而且CaCO3/PVC复合材料的冲击韧性在填充量为20%(mass)时达到最大值26.5 kJ•m-2,是纯PVC的4倍.  相似文献   

15.
Viscoelastic properties, morphology, and thermal stability of rigid and plasticized poly(vinyl chloride)/poly (methyl methacrylate) (PVC/PMMA) blends were studied. For that purpose, blends of variable composition from 0 to 100 wt% were prepared in the presence (15, 30, and 50 wt%) and in the absence of di(2‐ethylhexyl) phthalate as plasticizer. Their miscibility was investigated by using dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The DMTA and SEM results showed that the two polymers are miscible. Thermogravimetric studies on these blends were carried out in a flowing atmosphere of air from ambient temperature to 550°C. The results showed that the thermal degradation of rigid and plasticized PVC/PMMA in this broad range of temperature is a three‐step process and that PMMA exerted a stabilizing effect on the thermal degradation of PVC during the first step by reducing the rate of dehydrochlorination. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
水滑石填充聚氯乙烯材料研究进展   总被引:16,自引:0,他引:16  
张强  吕杰彬 《现代化工》2001,21(1):18-20
水滑石在与其他热稳定剂复配作为聚氯乙烯(PVC)热稳定剂时,除可显著提高PVC热稳定性外,还可赋予PVC材料一些其他优异的性能。本文介绍了水滑石的性质和用途及水滑石填充PVC材料研究进展,并展望了水滑石在我国PVC工业中的应用前景。  相似文献   

17.
The bismuth(III)neodecanoate (Bi(Ne)3) was synthesized via the method of co-reaction of bismuth oxide, neodecanoic acid, and acetic anhydride and then characterized by Fourier transform infrared spectroscopy (FTIR) and elemental analysis (EA). The effect of Bi(Ne)3 as a thermal stabilizer on poly(vinyl chloride) (PVC) was assessed by thermal aging test, Congo red test, conductivity measurement, and thermogravimetric analysis, respectively. The results showed that Bi(Ne)3 significantly provided PVC with a good initial color and long-term stability. Bi(Ne)3 played a role in improving the stabilizing efficiency of PVC through absorbing hydrogen chloride (HCl) and displacing labile chlorine atoms in PVC molecular chains.  相似文献   

18.
Macromolecule flame retardant melamine‐dicyandiamide‐formaldehyde‐phosphoric acid (denoted as MDFP) was used as the shell material to synthesize zinc hydroxystannate@MDFP (denoted as ZHS@MDFP), a novel composite flame retardant with core–shell structure, via masterbatch method. The morphology and structure of ZHS@MDFP were analyzed by means of transmission electron microscopy, X‐ray powder diffraction, Fourier transform infrared spectrometry, and thermal analysis. Moreover, the effect of ZHS@MDFP as a flame retardant on the flame‐retardant behavior and mechanical properties of flexible poly(vinyl chloride) (denoted as PVC) was investigated. It has been found that as‐synthesized ZHS@MDFP composite flame retardant has core–shell structure. Besides, as‐synthesized ZHS@MDFP as a core–shell flame retardant is superior to ZHS in increasing the limiting oxygen index and decreasing the smoke density rating of PVC, which is because the decomposition of MDFP shell as the blowing agent expands the char layer thereby improving the flame‐retarding capability of ZHS core. More importantly, ZHS@MDFP does not cause damage to the tensile strength and elongation at break of PVC matrix, which implies that the MDFP shell favors to improve the compatibility between ZHS and flexible PVC matrix. POLYM. ENG. SCI., 54:1983–1989, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
研究将水滑石、水滑石和钙锌复合物作为热稳定剂,加入PVC中,在85℃真空条件下劣化40 d,对其力学性能和热稳定性进行了研究,并探讨了复合稳定剂的作用效果。结果表明,热稳定剂水滑石及水滑石、钙锌复合物的加入均能较好的改善PVC的力学性能和热稳定性,且复合稳定剂的作用效果比水滑石单独使用更好,虽然断裂伸长率有所降低,但断裂强度有所增强。  相似文献   

20.
The properties and morphology of nano‐calcium carbonate (nano‐CaCO3) modified with the titanate coupling agent isopropyl trioleoyl titanate (IPTT) were characterized by Fourier transform infrared, thermogravimetric analyses, surface tension, and transmission electron microscopy. The results showed that the grafting ratio of IPTT on the surface of nano‐CaCO3 (IPTT‐Ca) increased with IPTT content. IPTT‐Ca/PBA/PMMA (IPTT‐Ca/ACR, PBA/PMMA core‐shell polymer, referred to ACR) latexes were prepared by seeded emulsion polymerization. They were then used to mix with PVC resin. The outer layer (PMMA) enhanced the dispensability of IPTT‐Ca/ACR in the PVC matrix by increasing the interfacial interaction of these composite particles with PVC. The notched impact strengths of the blends were influenced by the weight ratio of IPTT‐Ca to BA/MMA monomers, the weight ratio of BA/MMA. The relationships between the mechanical properties and the core‐shell composite structures were elaborated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号