首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to explore the effects of chemical composition on the rheological behavior o filled polymeric systems, we prepared polystyrene (9PS) and poly(methyl methacrylate) (PMMA) particles crosslinked with either ethylene glycol dimethacrylate (EGDMA) or divinyl benzene (DVB), and mixed these particles in a PMMA matrix. PS particles crosslinked with 10% EGDMA are better dispersed in a PMMA matrix, compared to PS particles, crosslinked with 10% DVB, due to the compatibilizing effect of EGDMA. For PMMA particles crosslinked with DVB, particle-matrix interactions in a PMMA matrix are smaller than in EGDMA-PMMA filled PMMA. Therefore, particles tend to agglomerate in PMMA composites filled with DVB-PMMA particles, especially in a low molecular weight matrix. We compared PMMA matrices of molecular weights 35,000 and 75,000. Higher particle-matrix interaction in the higher molecular weight matrix resulted in lower relative viscosities for DVB-PS filled systems, due to better dispersion of the particles. Composites filled with EGDMA-PS particles behave similarly to those filled with DVB-PS particles. PMMA composites filled with DVB-PMMA particles have a lower relative viscosity in the higher molecular weight PMMA matrix at low shear rates, due to better dispersion in the higher molecular weight matrix. However at high shear rates, particles are well dispersed in both PMMA matrices and, then, the relative viscosity is higher due to better bonding in the higher molecular weight matrix.  相似文献   

2.
Steady shear viscosities and dynamic moduli of polymer composites, consisting of combinations of crosslinked beads and matrices of polystyrene (PS) and polymethacrylates (PMA), are measured in a cone and plate rheometer. Viscosities and moduli were very sensitive to chemical composition. Crosslinked beads of identical composition to the matrix exhibited the lowest viscosity enhancements at low shear rates and the lowest moduli in dynamic mechanical analysis. The effects of bead concentration on rheological behavior were compared for PS and PMMA beads in a PMMA matrix. PMMA beads produce small effects, whereas PS beads yield highly non-Newtonian systems in PMMA, showing a yield stress of 1100 Pa at 30 wt% filler loading and dynamic moduli independent of frequency. We suggest that rheological behavior reflects the state of dispersion of beads in the matrix. Beads identical in composition to the matrix yield uniform dispersions. We propose that uniform and stable bead dispersions exhibit the lowest viscosity and moduli. Beads that cluster in the matrix, such as PS beads in PMMA, exhibit highly non-Newtonian behavior.  相似文献   

3.
The rheological properties of polystyrene (PS) and poly(methyl methacrylate) (PMMA) composites filled with monodisperse sized crosslinked polymeric particles are sensitive to processing history and chemical composition. Particles compatible with the matrix, such as PMMA or copolystyrene-vinylphenol in a PMMA matrix, are randomly dispersed on mixing, yielding (almost) Newtonian fluids. Particles incompatible with the matrix, such as PS or copolystyrene-acetoxystyrene in PMMA, produce composites whose steady shear viscosities depend on shear rate and whose dynamic moduli are elevated at low frequency. Particles in incompatible composites tend to cluster, producing a structure that is destroyed at high shear rates and that reforms on aging at elevated temperatures.  相似文献   

4.
Monodispersed polystyrene (PS) particels, crosslinked with divinylbenzene (DVB), were prepared by emulsifier-free emulsion polymerization. The colloidal-suspension rheology of a low-molecular-weight liquid polysulfide, which is used in commercial sealants, filled with these PS particles varying in size and particle-crosslink density, was studied. At low frequencies or shear rates, the dynamic moduli and viscosity increased as particle diameter decreased from 1.25 to 0.315 μm or particle crosslink density increased from 0 to 5 mole% DVB. We suggest that particle-particle interactions are dominant and lead to the formation of clusters in the concentrated suspension. Rheological properties associated with network buildup in suspensions were most sensitively monitored by a kinetic-recovery experiment. The strength of, as well as the tendency for, cluster network formation in the colloidal suspensions increases with decreasing particle size, and increasing particle-crosslink density, or decreasing surface roughness.  相似文献   

5.
The rheological properties of calcium carbonate-filled polypropylene has been examined using a Rheometrics dynamic analyzer RDAII. The study included a steady shear test, a transient stress growth test, and a dynamic oscillatory shear flow. Yield behavior was observed in all kinds of rheological tests for highly filled compounds when the volume loading exceeded a critical value at about 20%. The empirical Cox-Merz rule, which is usually applicable to an unfilled polymer, was found to be invalid for highly filled compounds. The modified Cox-Merz rule, in which the apparent viscosity versus the shear rate is equal to the complex viscosity versus the frequency-amplitude in the nonlinear region, was found to be valid only for highly filled compounds. The viscosity and the apparent yield values appear to increase with increasing volume loading of filler particles. The surface treatment of fillers, which presumably reduces the interaction between filler particles and the extent of agglomeration, results in major viscosity reductions and decreases in apparent yield values. The yield values determined from various tests are not the same. The results are interpreted in terms of a system forming a filler network due to weak inter-particle forces. The yield stress resulting from the breakdown and recovery of the network is thus dependent on the characteristic time of the individual test.  相似文献   

6.
The rheological behavior and crosslinking kinetics of model filled rubber compounds during curing were investigated. The effect of chemical composition of monodisperse size particles, prepared by emulsifier‐free emulsion polymerization, on dynamic moduli and gelation time of the filled compounds was studied. All filled systems showed much shorter gelation times than the pure matrix in the order PSVP < PS < PMMA ? Pure Matrix. The dynamic moduli during curing increased with increasing interactions between particles and matrix. Physical crosslinking, due to either particle clustering or a network of filler particles with an adsorbed polymer layer, made a significant contribution to the overall crosslink density and the gelation of rubber compounds. As a result, the dynamic mechanical properties and curing kinetics of the rubber compounds varied with the chemical nature of the filler particles.  相似文献   

7.
Steady shear vxiscosity, dynamic moduli and the appearance of fracture surfaces of model composites, consisting of monodisperse crosslinked polymeric spheres of varied composition in a polymethyl-methacrylate matrix, depend on the compatibility of filler particle and matrix. After intensive mixing, “compatible” systems form uniform and stable dispersions. Filler particles cluster in incompatible composites producing a highly non-Newtonian response. At 40 w% filler, yield behavior results, with a yield stress of 3100 Pa for polystyrene particles and 1900 Pa for copolystyrene-acetoxystyrene particles. The flow properties of compositionally complex particles from seeding are determined by particle surface composition.  相似文献   

8.
The role of rigid particle size in the deformation and fracture behavior of filled semicrystalline polymer was investigated with systems based on polypropylene (PP) and model rigid fillers [glass beads, Al(OH)3]. The regularities of the influence of particle content and size on the microdeformation mechanisms and fracture toughness of the composites at low and high loading rates were found. The existence of the optimal particle size for fixed filler content promoting both maximum ultimate elongation of the composite at the tensile and maximum toughness at impact test was shown. The decrease of the toughening effect with both decreasing and increasing particle size regarding the optimal one was explained by dual role of particle size, correspondingly as either “adhesive” or “geometric” factors of fracture. The adhesive factor is due by the increase of debonding stress with the particle size decrease and the voiding difficulty resulting in the restriction of plastic flow. The geometric factor consists in the dramatic decrease of the composite strength at break if the void size exceeds the critical size of defect (for a given matrix) at which the crack initiation occurs. The analysis of the filled polymer toughness dependencies upon the particle size revealed that a capacity of rigid particles for the energy dissipation at the high loading rate depends on two factors: (i) ability of the dispersed particles to detach from matrix and to initiate the matrix local shear yielding at the vicinity of the voids and (ii) the size of the voids forming. Based on the findings it was concluded that the optimal minimal rigid particle size for the polymer toughening should answer the two main requirements: (i) to be smaller than the size of defect dangerous for polymer fracture and (ii) to have low debonding stress (essentially lower compared to the polymer matrix yield stress). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1917–1926, 2004  相似文献   

9.
Shell-crosslinked core–shell nanoparticles (SCCSN) of 63–104 nm in diameter and containing 79.1 wt% crosslinked polystyrene (PS) shell of 16.5–37.0 nm in thickness were prepared by miniemulsion polymerization of styrene in the presence of silane modified nanosilica. The PS shell was crosslinked using divinyl benzene in order to anchor the shell on the nanoparticle surface, to segregate the silica core from the matrix and to avoid entanglement between the shell PS and the matrix macromolecules in SCCSN filled PS composites. Steady and dynamic rheologies of SCCSN filled PS were compared with bare silica filled PS. The SCCSN filled PS composites exhibited exceedingly good rheological stability than silica filled ones during annealing. Both bare silica and SCCSN introduced a non-terminal dynamic rheology while they did not introduce additional mechanism responsible for origination of nonlinear steady flow except for macromolecular disentanglement of the PS matrix. The reinforcement of SCCSN to PS was related to the silica core even though the crosslinked shell could effectively eliminate filler aggregation as the case of silica filled PS.  相似文献   

10.
The shear viscosity, the shear compliance, and their shear rate dependence were determined by a Weissenberg rheogoniometer, and the effect of the grafted poly(methyl methacrylate) chains on the intensification of the interaction at the interface between the ionomer matrix and the filler was discussed. Results were as follows: (1) The relative viscosity of the ionomer filled with MMA-grafted perlite to the matrix ionomer and the yield stress increased with increase in the volume fraction of perlite, and these behaviors were more remarkable in the case of the perlite with larger quantity of grafted PMMA. (2) The effective thickness of the immobilized matrix layer on the filler surface in the Ziegel equation and the crowding factor in the Mooney equation showed larger values in the case of the filled systems of MMA-grafted perlite than in the case of the unmodified perlite. (3) At the same total volume fraction which was the sum of the quantities of the perlite and the grafted PMMA, the relative viscosity and the crowding factor showed respectively a maximum with the quantity of grafted PMMA. (4) The shear compliance of these filled systems decreased with perlite content. A little effect of the amount of grafted PMMA on the compliance was observed at the same volume fraction of perlite. According to these rheological properties, it could be concluded that the grafted PMMA chains were effective in increasing the interaction between the ionomer matrix and the perlite at their interface, particularly in the lower shear rate region.  相似文献   

11.
Two kinds of different size calcium carbonates are blended and filled into polypropylene in 30 wt%. The melting viscosity of PP composites samples is measured by capillary extrusion rheometer at 230°C. The results show that the melt viscosity of PP composites evidently decreased when that was filled with the blending 325 and 1,500 mesh CaCO3 and the 1,500 mesh proportion in fillers was from 20 to 60 wt%. The viscosity in the low shear velocity decreased more than that in the high shear velocity. The shear viscosity of single filler and filler samples with the size distribution at the different temperature was studied by capillary extrusion rheometer. The results show that the flow activation energy and the flow activation entropy of composites filled with the size distribution filler increased. The change of the flow activation entropy and the model of the efficient arrangement of the structure are used to explain the phenomenon in melting viscosity decrease of PP filled with the size distribution fillers. A structural model of composites that filled with the size distribution fillers was set up. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
Novel nanoparticles, polymer‐particle coupling agents, and functionalized polymers are being developed to enhance the performance of particle‐reinforced polymer systems such as advanced rubber compounds for automobile tires. Understanding the complex rheological behavior of rubber is critical to providing insights into both processability and end‐use properties. One unique aspect of the rheology of filled elastomers is that the incorporation of particles introduces a hysteretic softening (Payne effect) at small dynamic strains. This study demonstrates that this nonlinear viscoelastic behavior needs to be considered when attempting to correlate steady shear response (Mooney viscosity) to oscillatory shear measurements from test equipment such as the Rubber Process Analyzer (RPA). While a wide array of unfilled gum elastomers show good correlation between Mooney viscosity and dynamic torque from the RPA at all of the strain amplitudes used, rubber compounds containing silica and carbon black particles only exhibit good agreement between the two measures of processability when the oscillatory strain amplitude is high enough to sufficiently break up the filler network. Other features of the filler network and its influence on nonlinear rheology are considered in this investigation, including the effects of polymer–filler interactions on filler flocculation and the use of Fourier transform rheometry to illustrate the “linear‐nonlinear dichotomy” of the Payne effect. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40818.  相似文献   

13.
Shear and extensional flow properties of the melts of high‐density polyethylene (HDPE)‐maple composites were studied with capillary rheometry to understand the effects of the wood content, particle size, and maleated polyethylene (MAPE). The viscosity data were compared with the values for neat matrix resin for reference. The effects of commercial wood particle size grades were examined at 60% by weight of wood loading. It was found that both shear and extensional viscosities increase with wood content but the filler content dependence is not as significant as for suspensions of inorganic fillers at similar filler loadings. Commercial wood particle size grades were found to result in less change in viscosity than wood content. The Mooney analyses conducted on the lower branch of the capillary shear flow data revealed a significant contribution of wall slip and confirmed the presence of a yield stress at higher filler contents. The internal lubrication role of MAPE was also illustrated in detail through the changes in both shear and extensional flow. POLYM. ENG. SCI., 45:549–559, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Transparency is a key material property of polycarbonate (PC), polystyrene (PS), and poly(methyl methacrylate) (PMMA). To study the optical properties of particle‐filled PC, PS, and PMMA, composites containing inorganic particles in different sizes and concentrations were produced by direct melt mixing in this work. The optical properties characterized by total light transmittance, haze, and clarity were studied. The results show that the optical properties of polymer composites are strongly affected by particle content, particle size, and especially by difference in refractive indices between polymer matrix and particles. It is also revealed that the light transmittance and haze of composites are mainly affected by difference in refractive indices, whereas the clarity is more affected by particle size. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A thorough understanding of the rheological properties of real-world, formulated polymer melts and solutions is important to fabricate articles via typical melt processing techniques. Polyamides have been studied extensively in the area of water purification applications. In this work, the viscosity of these homogeneous polyamide 11 and polyamide 12 solutions in specific polyols was measured in the single phase region as a function of shear rate and temperature via capillary rheometry. In addition, the viscosity of the same polyamide solutions containing various levels of dispersed, nanoscale calcium carbonate particles was characterized in order to understand the rheology of the filled systems. Viscosity-reduced shear rate master curves were constructed by applying the principle of time–temperature superposition, and the activation energies were measured for the polyamide-polyol solutions. The observed increase in viscosity caused by the addition of nanofiller could not be explained by simply applying a vertical shift to the master curve, and a density exponent was required to account for the stiffening mechanism. Also, the dependence of the relative viscosity on the filler loading was shown to be consistent with the hypothesis that the filler particles were organized in the form of small fractal aggregates. The filled polyamide 11 systems exhibited higher relative viscosities than the filled polyamide 12 systems, indicating a higher level of particle aggregation and larger mean cluster size for the filled polyamide 11 systems. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48244.  相似文献   

16.
The rheological properties of polystyrene melts filled with 30 vol % of CaCO3 particles of varying particle size are described. The influence of surface coating the particles with stearic acid is considered. Generally, the compounds with the uncoated particles exhibit viscosities which increase at ever greater rates as the shear rates decrease. It appears that these compounds exhibit yield values. Elongational flow data also suggest the existence of yield values. Difficulties exist in measurement of normal stresses in compounds with sizeable yield values. The principal normal stress difference at fixed shear stress of the PS/CaCO3 compounds is lower than that of the PS melt. The magnitude of viscosity increases and yield values increase with decreasing particle size. Coating of particles with stearic acid results in major viscosity reductions and decreases in apparent yield values. The surface coating is most effective with the smallest particles. It presumably reduces interaction between particles and the extent of aggregation.  相似文献   

17.
Steady shear viscosities and dynamic moduli of polymer composites, consisting of crosslinked polystyrene beads and low molecular weight polystyrene matrix, were measured in a cone-and-plate rheometer at different temperatures. Viscosities and dynamic moduli were found to be very sensitive to filler loading and measurement temperature. Steady shear viscosities of 30% and 40% loaded low molecular polystyrene composites showed a power-law behavior over the entire range of shear rates. Storage and loss moduli were initially linear with frequency on double logarithmic plots, with limiting slopes of 0.3 and 0.1. At high concentration of filler particles, they showed a flat plateau at low frequencies, indicating that these systems exhibit a yield behavior. A 20% PS composite loaded with beads of high crosslink densities resulted in poor dispersion of beads as a result of poor dispersion of particles. PS beads 1.16 μm in diameter showed a higher viscosity. It is due to the apparent increase in loading resulting from broken particles. At low measurement temperature, filler effects were suppressed by high viscosity matrix and showed a similar rheological behavior to high molecular weight by PS matrix. We suggest that rheological behavior reflects the state of dispersion of beads in the matrix.  相似文献   

18.
The elastic and yield properties of drawn poly(methyl methacrylate) (PMMA) filled with ultrafine SiO2 are described as functions of filler content and size. The drawn PMMA composites were made by uniaxially drawing to x4.0 at 100°C and at a rate of 20 mm/min. Four compliance values, i.e., S33, S11, S13, and S44 were determined. These values decreased with filler content and decreasing filler size. The relative compliance values Sde/Sdo(Sde is the compliance of drawn PMMA composites and Sdo is that of drawn unfilled PMMA) are almost equivalently changed with changes in filler content. The elastic properties of drawn PMMA composites are thus reinforced isotopically. This is characteristic of PMMA which has a large side group. The yield behavior of drawn PMMA composites have similar filler size and content dependence to those of elastic properties except that the transverse yield stresses become more brittle with filler content. The anisotropy in yield stress is relatively larger than that of elastic properties. This is probably because the anti-reiforcing effect, such as fibrillation becomes prominent with increasing filler content in the perpendicular direction.  相似文献   

19.
Silica nanoparticles functionalized with polyvinylpyrrolidone (PVP) were obtained by the grinding/mechanical activation of quartz or nonfunctionalized silica nanoparticles in a stirred media mill in the presence of 1‐vinyl‐2‐pyrrolidone, as proven by Fourier transform infrared spectroscopy. The polymer layer thickness formed on the silica nanoparticles after 8 h of mechanical activation in the absence of polymerization initiators amounted to about 10 nm, as derived from shear rheology. The silica nanoparticles functionalized with the hydrophilic PVP by mechanochemical polymerization reaction were used as fillers for hydrogels based on poly(hydroxyethyl methacrylate) (polyHEMA). The water absorption, release properties, and mechanical properties of the polyHEMA–silica composites were measured as functions of the filler content and particle size of the filler. PolyHEMA samples containing 20 wt % of the functionalized silica particles exhibited a higher maximum water absorption than the unfilled polymer; this showed that the hydrophilic interface between the filler and the matrix improved the water absorption. The release of methylene blue from the polyHEMA–silica composites was governed by diffusion and was almost unaffected by the silica particles. The values for the storage modulus and loss modulus of the polyHEMA–silica composites increased with growing filler content. For constant filler content, the storage modulus increased with decreasing particle diameter of the filler; this showed that the reinforcing effect increased with the interface between the filler particles and the matrix polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Crosslinked polyethylene foam is widely used in packaging and as an insulation material. Finely ground waste of such crosslinked foam mesh size 7 or particle size less than 2815 μm is used as a filler in high‐density polyethylene (HDPE) of two different grades (7.5 and 21 MFI). Mechanical, thermal, and morphological properties of filled composites is studied experimentally. Waste foam powder concentration was varied up to 40% by weight basis. Impact strength of base HDPE increased by a factor of six. The overall changes in mechanical properties are similar to the crosslinking effect. It is believed that waste foam particles act as a point of entanglement with different chains of polyethylene. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 110–114, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号