首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The construction of solution-adapted meshes is addressed within an optimization framework. An approximation of the second spatial derivative of the solution is used to get a suitable metric in the computational domain. A mesh quality is proposed and optimized under this metric, accounting for both the shape and the size of the elements. For this purpose, a topological and geometrical mesh improvement method of high generality is introduced. It is shown that the adaptive algorithm that results recovers optimal convergence rates in singular problems, and that it captures boundary and internal layers in convection-dominated problems. Several important implementation issues are discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
We report on results obtained with a metric-driven mesh optimization procedure for simplicial meshes based on the simulated annealing (SA) method. The use of SA improves the chances of removing pathological clusters of bad elements, that have the tendency to lock into frozen configurations in difficult regions of the model such as corners and complex face intersections, prejudicing the overall quality of the final grid. A local version of the algorithm is developed that significantly lowers the computational cost. Numerical examples illustrate the effectiveness of the proposed methodology, which is compared to a classical greedy Gauss–Seidel optimization. Substantial improvement in the quality of the worst elements of the grid is observed for the local simulated annealing optimization. Furthermore, the method appears to be robust to the choice of the algorithmic parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. New interpretations of well‐known nodally based objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modified Newton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element‐based quality measures to demonstrate that good mesh quality can be achieved with nodally based objective functions. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

5.
Three‐dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high‐quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2×2 matrices do not hold for 3×3 matrices, significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equality in two dimensions of the smoothness and condition number of the Jacobian matrix objective functions does not extend to three dimensions and further, that the equality of the Oddy and condition number of the metric tensor objective functions in two dimensions also fails to extend to three dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non‐dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all‐hexahedral ‘whisker‐weaved’ meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

6.
This research work deals with the analysis and test of a normalized‐Jacobian metric used as a measure of the quality of all‐hexahedral meshes. Instead of element qualities, a measure of node quality was chosen. The chosen metric is a bound for deviation from orthogonality of faces and dihedral angles. We outline the main steps and algorithms of a program that is successful in improving the quality of initially invalid meshes to acceptable levels. For node movements, the program relies on a combination of gradient‐driven and simulated annealing techniques. Some examples of the results and speed are also shown. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
We propose a multiobjective mesh optimization framework for mesh quality improvement and mesh untangling. Our framework combines two or more competing objective functions into a single objective function to be solved using one of various multiobjective optimization methods. Methods within our framework are able to optimize various aspects of the mesh such as the element shape, element size, associated PDE interpolation error, and number of inverted elements, but the improvement is not limited to these categories. The strength of our multiobjective mesh optimization framework lies in its ability to be extended to simultaneously optimize any aspects of the mesh and to optimize meshes with different element types. We propose the exponential sum, objective product, and equal sum multiobjective mesh optimization methods within our framework; these methods do not require articulation of preferences. However, the solutions obtained satisfy a sufficient condition of weak Pareto optimality. Experimental results show that our multiobjective mesh optimization methods are able to simultaneously optimize two or more aspects of the mesh and also are able to improve mesh qualities while eliminating inverted elements. We successfully apply our methods to real‐world applications such as hydrocephalus treatment and shape optimization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a computational framework for quasi‐static brittle fracture in three‐dimensional solids. The paper sets out the theoretical basis for determining the initiation and direction of propagating cracks based on the concept of configurational mechanics, consistent with Griffith's theory. Resolution of the propagating crack by the FEM is achieved by restricting cracks to element faces and adapting the mesh to align it with the predicted crack direction. A local mesh improvement procedure is developed to maximise mesh quality in order to improve both accuracy and solution robustness and to remove the influence of the initial mesh on the direction of propagating cracks. An arc‐length control technique is derived to enable the dissipative load path to be traced. A hierarchical hp‐refinement strategy is implemented in order to improve both the approximation of displacements and crack geometry. The performance of this modelling approach is demonstrated on two numerical examples that qualitatively illustrate its ability to predict complex crack paths. All problems are three‐dimensional, including a torsion problem that results in the accurate prediction of a doubly‐curved crack. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we implement the method of proper orthogonal decomposition (POD) to generate a reduced order model (ROM) of an optimization‐based mesh movement scheme. In this study it is shown that POD can be used effectively to generate an ROM, that accurately reproduces the full order mesh movement algorithm, with a decrease in computational time of over 99%. We further introduce a novel training procedure whereby the POD models are generated in a fully automated fashion. The technology is applicable to any mesh movement method and enables potential reductions of up to four orders of magnitude in mesh movement related costs. The proposed model can be implemented without having to pre‐train the POD model, to any fluid–structure interaction code with an existing mesh movement scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We present a method to adapt a tetrahedron mesh together with a surface mesh with respect to a size criterion. The originality of our work lies in the fact that both surface and tetrahedron mesh adaptation are carried out simultaneously and that no CAD is required to adapt the surface mesh. The adaptation procedure consists of splitting or removing interior and surface edges which violate a given size criterion. The enrichment process is based on a bisection technique. In order to guarantee mesh conformity during the refinement process, all possible remeshing configurations of tetrahedra have been examined. Once the tetrahedron mesh has been adapted, surface nodes are projected on a geometrical model. The building of a surface model from discrete data has already been presented in this journal. The method is based on a mesh‐free technique called Hermite Diffuse Interpolation. Surface and volume mesh optimization procedures are carried out during the adaptation and at the end of the process to enhance the mesh. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An octree‐based mesh generation method is proposed to create reasonable‐quality, geometry‐adapted unstructured hexahedral meshes automatically from triangulated surface models without any sharp geometrical features. A new, easy‐to‐implement, easy‐to‐understand set of refinement templates is developed to perform local mesh refinement efficiently even for concave refinement domains without creating hanging nodes. A buffer layer is inserted on an octree core mesh to improve the mesh quality significantly. Laplacian‐like smoothing, angle‐based smoothing and local optimization‐based untangling methods are used with certain restrictions to further improve the mesh quality. Several examples are shown to demonstrate the capability of our hexahedral mesh generation method for complex geometries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Several extensions and improvements to surface merging procedures based on the extraction of iso‐surfaces from a distance map defined on an adaptive background grid are presented. The main objective is to extend the application of these algorithms to surfaces with sharp edges and corners. In order to deal with objects of different length scales, the initial background grids are created using a Delaunay triangulation method and local voxelizations. A point enrichment technique that introduces points into the background grid along detected surface features such as ridges is used to ensure that these features are preserved in the final merged surface. The surface merging methodology is extended to include other Boolean operations between surface triangulations. The iso‐surface extraction algorithms are modified to obtain the correct iso‐surface for multi‐component objects. The procedures are demonstrated with various examples, ranging from simple geometrical entities to complex engineering applications. The present algorithms allow realistic modelling of a large number of complex engineering geometries using overlapping components defined discretely, i.e. via surface triangulations. This capability is very useful for grid generation starting from data originated in measurements or images. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
An algorithm for tetrahedron mesh generation and optimization with respect to a shape and a size criterion is presented. A well distributed set of nodes is first generated by an octree method, and the set is then triangulated. The advancing front technique is used to mesh the whole volume. Emphasis has been placed on management of the front. The method involves priority construction of enhanced quality tetrahedra. Each face is assigned to a front corresponding to the quality of the best tetrahedron which can be constructed. Elements are destroyed in the case of non-convergence. Optimization procedures make local use of the algorithm used to mesh the complete model. Industrial examples of relatively complex volumes are given, demonstrating that a high quality and optimized mesh can be obtained by the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Fully automatic advancing front type mesh generator to take care of crack and fracture problems has been presented. It is coupled with Zienkiewicz and Zhu error estimator, the refinement methodology depends on the concept of strain energy concentration for adaptive analysis of mixed‐mode crack problems. No investigation is reported in this direction so far. It has been found that the above combination proved to be very powerful for adaptive finite element analysis of mixed‐mode crack problems in two‐dimensional isotropic solids. Very accurate stress intensity factors have been obtained for a target error of 10 per cent with a minimum number of steps. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
We develop a variational r‐adaptive finite element framework for solid dynamic applications and explore its conceptual links with the theory of dynamic configurational forces. The central idea underlying the proposed approach is to allow Hamilton's principle of stationary action to determine jointly the evolution of the displacement field and the discretization of the reference configuration of the body. This is accomplished by rendering the action stationary with respect to the material and spatial nodal coordinates simultaneously. However, we find that a naive consistent Galerkin discretization of the action leads to intrinsically unstable solutions. Remarkably, we also find that this unstable behavior is eliminated when a mixed, multifield version of Hamilton's principle is adopted. Additional features of the proposed numerical implementation include the use of uncoupled space and time discretizations; the use of independent space interpolations for velocities and deformations; the application of these interpolations over a continuously varying adaptive mesh; and the application of mixed variational integrators with independent time interpolations for velocities and nodal parameters. The accuracy, robustness and versatility of the approach are assessed and demonstrated by way of convergence tests and selected examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we begin by recalling an adaptive mesh generation method governed by isotropic and anisotropic discrete metric maps, by means of the generation of a unit mesh with respect to a Riemannian structure. We propose then an automatic triangular to quadrilateral mesh conversion scheme, which generalizes the standard case to the anisotropic context. In addition, we introduce an optimal vertex smoothing procedure. Application test examples, in particular a CFD test, are given to demonstrate the efficiency of the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, we formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst‐quality element in the mesh. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement methods. We show that a combined optimization approach that uses both objective functions obtains the best‐quality meshes for several complex geometries. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
We describe a new mesh smoothing method that consists of minimizing the sum of squared element volumes over the free vertex positions. To the extent permitted by the fixed vertices and mesh topology, the resulting mesh elements have uniformly distributed volumes. In the case of a triangulation, uniform volume implies well‐shaped triangles. If a graded mesh is required, the element volumes may be weighted by centroidal values of a sizing function, resulting in a mesh that conforms to the required vertex density. The method has both a local and a global implementation. In addition to smoothing, the method serves as a simple parameter‐free means of untangling a mesh with inverted elements. It applies to all types of meshes, but we present test results here only for planar triangle meshes. Our test results show the new method to be fast, superior in uniformity or conformity to a sizing function, and among the best methods in terms of triangle shape quality. We also present a new angle‐based method that is simpler and more effective than alternatives. This method is directly aimed at producing well‐shaped triangles and is particularly effective when combined with the volume‐based method. It also generalizes to anisotropic mesh smoothing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes an optimization and artificial intelligence‐based approach for solving the mesh partitioning problem for explicit parallel dynamic finite element analysis. The Sub‐Domain Generation Method (SGM) (Topping, Khan, Parallel Finite Element Computations. Saxe‐Coburg Publications: Edinburgh, U.K., 1996) is briefly introduced with its virtues and drawbacks. This paper describes the enhancement of the SGM algorithm (ESGM) by the introduction of a new, non‐convex bisection procedure and a new Genetic Algorithm (GA) module, which is better tuned for this particular optimization problem. Example decompositions are given and comparisons made between parallel versions of the ESGM, the SGM and other decomposition methods. The scalability of the ESGM is examined by using a range of examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号