首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: N‐Isopropylacrylamide (NIPAAm) was graft‐polymerized from its acetone solution onto poly(propylene) (PP) films, after electron‐beam irradiation in the presence of air oxygen. The effects of pre‐irradiation dose as well as monomer concentration, reaction temperature and reaction time on the grafting efficiency were investigated. Typical conditions for achieving maximum grafting yield were observed for 1 M monomer concentration, after PP pre‐irradiation with a 300 kGy dose and a reaction temperature of 50 °C. The location of the graft polymerization was examined by different methods including measurements of dimensional variations, calorimetry, SEM and AFM. The temperature‐responsive behavior of grafted copolymer was studied by swelling and contact angle measurements at different temperatures.

Temperature dependence of the swelling ratio in water as a function of temperature.  相似文献   


2.
Superfine wool powder was blended and extruded with poly(propylene) (PP) to produce blend pellets, and the extruded pellets were hot‐pressed into a blend film. SEM photographs show that the powder could be uniformly incorporated with PP after extrusion. FT‐IR spectra shows that no substantial changes occurred in the chemical structure of both PP and wool powder in the blend film. X‐Ray diffraction analysis indicates that crystallinity of the blend film was much higher than that of the wool powder and little lower than that of PP. TG‐tested results indicate that the thermal stability of the blend film declined with an increase in the powder content. Endothermic peaks of the wool powder in the blend film become more obvious as the powder content increases. Mechanical properties decline greatly with an increase in the wool powder content in the blend film.

  相似文献   


3.
This paper analyzes the thermal and thermo‐oxidative degradation behavior, phase separation, melting, and crystallization of blends consisting of isotactic poly(propylene) (IPP) and poly(propylene) grafted with maleic anhydride (PP‐g‐MA). It has been established that, depending on the blend composition and crystallization/preparation procedure, the blends of IPP and PP‐g‐MA can either co‐crystallize or evidence phase separation. This conclusion has been attained by comparing the DSC results of crystallization under dynamic and isothermal conditions with X‐ray diffraction results. On the basis of the obtained results, the optimum mixing ratios have been established as 95–85 wt.‐% IPP/5–15 wt.‐% PP‐g‐MA. Thermo‐oxidative behavior has been studied by thermogravimetry and differential thermal analysis.

  相似文献   


4.
Summary: A new class of melt blend material was prepared by extruding a mixture of 3‐aminopropyltriethoxysilane (APTES), maleic anhydride‐grafted poly(propylene) (PP‐g‐MA) with different molecular weight and MA content and poly(propylene) powder produced with a TiCl3‐based catalyst (PP‐A). A suitable selection of PP‐g‐MA provided extremely high melt strength (MS) of resultant blend materials. Such a superior melt property was caused by the synergy between the present melt reaction and the higher molecular weight portion containing PP‐A. The gel content measurements of typical blend materials and PP‐g‐MA/APTES blends indicated that an excessive amount of inert PP suppresses the formation of gels. The reaction between PP‐g‐MA and APTES was then investigated by analyzing crystalline polymer fractions separated from the atactic PP/PP‐g‐MA/APTES and atactic PP/PP‐g‐MA blends. The FT‐IR analysis of the fractions revealed that the NH2 group in APTES readily reacts with MA grafted on PP and the reaction leads to the formation of imide linkage. Moreover, the GPC analysis of the fraction showed that higher molecular weight polymers were formed in the presence of APTES. Since a trace amount of water surely produces in the vicinity of active silyltriethoxy groups during the reactive extrusion, such polymers were formed by the condensation between hydrolyzed APTES‐grafted polymer chains. These results led us to the conclusion that long‐chain‐branched PP (LCB‐PP) was certainly produced and its formation is essential for the increase in MS of the present blend materials.

Relationship between log(MS) and log(MFR) for PP/PP‐g‐MA/APTES and commercial PP resins.  相似文献   


5.
Poly(propylene) (PP) composites were prepared by using eggshell (ES) as filler and their mechanical properties were compared with those using talc (TA) and calcium carbonate (CC) of different grain sizes (X50). A decrease in impact strength and deformation at break with increase in filler content was observed. The PP composite with ES (X50 = 8.4 µm) was stiffer than those with CC (X50 = 0.7 µm). The hybrid composite PP‐ES‐TA showed a similar stiffness as the PP‐TA composites due to the similar morphology of TA (X50 = 0.5 µm) and ES, when TA was replaced up to 75 wt.‐% by ES. SEM study revealed evidence of improved interfacial bonding between PP and ES in theirs composites.

  相似文献   


6.
Summary: Ternary nanocomposites based on polycarbonate (PC), poly(propylene) (PP), and attapulgite (AT) were prepared via the method of two‐step melt blending, by which the AT was blended with PP prior to compound with PC. Structure and properties of the ternary PC/PP/AT nanocomposites were investigated. The degradation of PC triggered by AT during direct blending process can be inhibited effectively by using two‐step melt blending. It was found that the morphology of encapsulation structure like sandbag was formed in PC matrix, where PP encapsulated AT fibrillar single crystals. DSC experiments showed that in PC/PP/AT ternary nanocomposites, AT had a strong heterophase nucleation effect on PP, resulting in the enhancement of crystallization degree and the crystallization temperature of PP. DMA and mechanical property results showed that the ternary nanocomposites exhibited good balanced toughness and stiffness.

TEM photograph of PC/PP/AT ternary nanocomposite.  相似文献   


7.
Summary: The new nanocomposites consisting of metallocene poly(ethylene‐octene) (POE), silicate clay and wood flour (WF) were prepared by means of a melt blending method. In addition, maleic anhydride grafted poly(ethylene‐octene) (POE‐g‐MAH) was studied as an alternative to POE. The samples were characterized by XRD, FT‐IR spectroscopy, DSC, TGA, SEM, and mechanical testing. Based on the consideration of thermal and mechanical properties, it was found that the clay content of 11 wt.‐% was optimal for the preparation of POE‐g‐MAH/clay nanocomposites. The POE‐g‐MAH/clay/WF hybrid could obviously improve the mechanical properties of POE‐g‐MAH/WF hybrid since the former had the smaller WF phase size (being always less than 1.5 µm), the Si? O? C bond and the nanoscale dispersion of silicate layers in the polymer matrix. The biodegradation studies showed that the mass of hybrids reduced by about the content of WF. The new POE‐g‐MAH/clay/WF nanocomposites produced from our laboratory can provide a plateau tensile strength at break when the WF content was up to 50 wt.‐%.

  相似文献   


8.
Flexural, impact resistance, tensile, and sound absorption properties of composites from cornhusk fiber (CHF) and PP have been investigated. The effect of holding temperature, CHF length, CHF concentration, and enzyme treatment of CHF on mechanical properties and the effect of the latter two on sound absorption have been studied. Compared with jute/PP composites, CHF/PP composites have similar impact resistance, 33% higher flexural strength, 71% lower flexural modulus, 43% higher tensile strength, 54% lower tensile modulus, and slightly higher noise reduction coefficient. Enzyme treatment of CHF results in increased mechanical and sound absorption properties.

  相似文献   


9.
The use of grafted poly(propylene) (PP) and a random copolymer of ethylene and propylene (EPR) with an itaconic acid derivative, monomethyl itaconate (MMI), as compatibilizer for PP/EPR blends was analyzed. The grafting reaction was performed at 190 °C in a Brabender Plasticorder. 2,5‐Dimethyl‐2,5‐bis(tert‐butylperoxy) hexane was the radical initiator for the functionalization of PP; dicumyl peroxide was used as the radical initiator for the modification of EPR. The obtained degree of grafting was 1.5% by weight for PP and 1.2% by weight for EPR. The compatibilizing effect of modified polymers on the processability, morphology, and mechanical and thermal properties of the blends was of interest. Compatibilization substantially improved the toughness and deformation with little effect on the tensile modulus and strength. Moreover, this effect was particularly evident when both polymeric phases were grafted. Regarding compatibilization, the viscosity of the blends increased due to the high interfacial adhesion. Morphological studies showed that the particle size of the rubbery phase was reduced and the dispersion in the matrix improved by compatibilization. The grafted polymers behaved as nucleating agents, accelerating the PP crystallization.

Change in complex viscosity with angular frequency at 180 °C for unmodified and MMI‐functionalized PP/EPR (70/30) blends.  相似文献   


10.
Summary: Poly(propylene) (PP)/clay nanocomposites have been prepared via a novel reactive compounding approach, in which an epoxy based masterbatch consisting of 20 wt.‐% clay was introduced to poly(propylene) with the aid of a maleic anhydride grafted PP (MAPP). The masterbatch was prepared using a recently developed “slurry compounding” technique. After melt compounding, most clay particles have been exfoliated and dispersed into small stacks with several clay layers. WAXD data shows that the dispersion of clay is better at low clay content or high MAPP content. Due to the novelty of the preparation process and complication of the system, the tensile properties of nanocomposites exhibit some unique tendencies with varying the content of MAPP or masterbatch. It is believed that the yield strength and Young's modulus can be dramatically improved after minimizing the excess of unreacted epoxy and optimizing the dispersion of clay.

TEM micrograph of PP/clay nanocomposites prepared with epoxy based masterbatch.  相似文献   


11.
Summary: A novel method was used to prepare poly(propylene)/montmorillonite/calcium carbonate nanocomposites by melt‐mixing, using pristine montmorillonite (MMT), hexadecyltrimethylammonium bromide (C16), calcium carbonate (CaCO3) and a matrix in a twin‐screw extruder. Two different sizes of calcium carbonate were used (nanosized CaCO3 and micron‐sized CaCO3, the average sizes being 60 nm and 12 μm respectively). The nanocomposite structure was evidenced using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution electronic microscopy (HREM). Tensile tests and Izod notch impact tests suggested that the incorporation of nanosized CaCO3 into PP/montmorillonite nanocomposites increased the mechanical properties of the composites, but the improvement in the micro‐sized CaCO3‐filled PP/montmorillonite nanocomposites was found to be minimal. The thermal stability and flammability properties were characterized by thermogravimetric analysis (TGA) and a cone calorimeter respectively.

  相似文献   


12.
Plastic foams with nano/micro‐scale cellular structures were prepared from poly(propylene)/thermoplastic polystyrene elastomer (PP/TPS) systems, specifically the copolymer blends PP/hydrogenated polystyrene‐block‐polybutadiene‐block‐polystyrene rubber and PP/hydrogenated polystyrene‐block‐polyisoprene‐block‐polystyrene. These PP/TPS systems have the unique characteristic that the elastomer domain can be highly dispersed and oriented in the machine direction by changing the draw‐down ratio in the extrusion process. A temperature‐quench batch physical foaming method was used to foam these two systems with CO2. The cell size and location were highly controlled in the dispersed elastomer domains by exploiting the differences in CO2 solubility, diffusivity, and viscoelasticity between the elastomer domains and the PP matrix. The average cell diameter of the PP/TPS blend foams was controlled to be 200–400 nm on the finest level by manipulating the PP/rubber ratio, the draw‐down ratio of extrusion and the foaming temperature. Furthermore, the cellular structure could be highly oriented in one direction by using the highly‐oriented elastomer domains in the polymer blend morphology as a template for foaming.

  相似文献   


13.
Summary: A novel intumescent flame retardant (PSiNII), containing silicon, phosphorus and nitrogen, has been synthesized and incorporated into poly(propylene) (PP). The flame retardancy of PP/PSiNII, evaluated by the limiting oxygen index (LOI) value, can be enhanced up to 29.5 vol.‐% from 17.4 vol.‐% with 20% total loading amount of PSiNII. The thermal degradation behavior of PP/PSiNII are investigated by thermogravimetric analysis (TGA) under nitrogen and air, and pressure differential scanning calorimetry (PDSC) under 1.5 MPa of oxygen. The PP/PSiNII‐3 degrades at 400 °C for different time, and the process is investigated by FTIR which indicates there is P? O in the char. The morphologies of char formed at 400 °C for 10 min and after LOI test are investigated by scanning electron microscopy (SEM). The morphological structure of the char exhibits the swollen cells in the inner and a smooth outer surface, which do good to the thermal properties and fire performance of PP. The thermal stability of PP is improved by incorporating PSiNII.

Inner surface of PP/PSiNII‐3 after LOI test.  相似文献   


14.
Plastic foam with nano‐/micro‐scale cellular structures was prepared from a poly(propylene) (PP)/propylene‐ethylene copolymer (PER) blend by controlling bubble nucleation sites and bubble growth in disperse PER domains. Batch foaming experiments using a CO2 pressure quench method were conducted at room temperature. The bubble size and location were highly controlled in disperse PER domains by exploiting the differences in CO2 solubility and viscoelasticity between the PER domains and the PP matrix. The average cell diameter of PP/PER blend foams can be controlled within 0.5–2 µm by the PP/PER ratio, depressurization rate, and foaming temperature.

  相似文献   


15.
Dynamic mechanical and thermal properties of poly(propylene) (PP)/wood fiber composites have been studied using Dynamic Mechanical Analysis (DMA). In order to modify the PP matrix maleated poly(propylene) (PPMA) and poly(butadiene‐styrene) rubber were used as compatibilizer and impact modifier, respectively. tan δ peak temperature of the compatibilized systems was found to increase in comparison to that of composites without coupling agent, indicating improved adhesion and interaction between PP matrix and wood fibers. The storage modulus (E′)‐temperature (T) relationship of all composites is characterized by two transition points. The E′ of compatibilized composites exhibits higher values than those of the uncompatibilized ones at low temperatures (up to the β‐relaxation). In the temperature interval from β‐transition to 60 °C, the composites containing PPMA have lower modulus, and above 60 °C the E′T curves tend to converge. DSC indicates that the wood fibers act as nucleating agent for PP. Maleated poly(propylene) slightly retards the crystallization rate, resulting in a composite structure, composed mainly of large spherulites, with a higher crystallinity index. Fourier Transform Infrared (FT‐IR) microscopy was also applied to explore the interface between wood fibers and PP matrix. The strong absorption band at 1 738 cm?1 in the IR spectrum scanned at the interfacial region between the fiber and matrix indicated that PPMA had probably reacted either by formation of ester bonds or hydrogen bonding with hydroxyl groups from cellulose.

Optical micrograph of PPWF composite in polarized light.  相似文献   


16.
Summary: The difference between the melting temperatures of poly(propylene) (PP) fibre and random poly(propylene‐co‐ethylene) (PPE) was exploited in order to establish processing conditions for an all PP composite. Under these conditions the matrix must be a liquid in order to ensure good wetting and impregnation at the fibres, though the temperature must not be too high to avoid melting the fibres. The high chemical compatibility of the two components allowed creation of strong physico‐chemical interactions, which favour strong interfacial adhesion. The static and dynamic mechanical properties and morphology of poly(propylene) woven fabric reinforced random PPE composites have been investigated with reference to the woven geometry that influenced the properties of the woven composites. Among the various cloth architectures that were used in the PP‐PPE composites, the satin weave imparted overall excellent mechanical properties due to the weave parameters, such as high float length and fibre count, low interlace point and crimp angle, etc. Morphology of the composite has been investigated by macro photography and scanning electron microscopy. Images from scanning electron microscopy provided confirmation of the above results by displaying the consolidation and good fibre‐matrix wetting of the composites.

Loss modulus of poly(propylene) woven‐matrix composites with different types of woven geometry.  相似文献   


17.
Summary: Contact‐mode AFM adhesion strength measurements were employed in order to investigate the capability of PBBMA FR as an adhesion promoter in PP composites. The reactive FR exhibited superior coupling properties in comparison to conventional coupling agents such as PP‐g‐ma introduced in reinforced PP composites.

AFM image showing the recess carved out by the AFM tip in a PBBMA layer deposited on glass treated with APS.  相似文献   


18.
Summary: Blends of poly(propylene) (PP) were prepared with poly[ethylene‐co‐(methyl acrylate)] (EMA) having 9.0 and 21.5% methyl acrylate comonomer. A similar series of blends were compatibilized by using maleic anhydride grafted PP. The morphology and mechanical properties of the blends were investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) in tensile mode. The DMA method and conditions were optimized for polymer film specimens and are discussed in the experimental section. The DSC results showed separate melting that is indicative of phase‐separated blends, analogous to other PP‐polyethylene blends but with the added polarity of methyl acrylate pendant side groups that may be beneficial for chemical resistance. Heterogeneous nucleation of PP was decreased in the blends because of migration of nuclei into the more polar EMA phase. The crystallinity and peak‐melting temperature did not vary significantly, although the width of the melting endotherm increased in the blends indicating a change had occurred to the crystals. DMA analysis showed the crystal‐crystal slip transition and glass transition (Tg) for PP as well as a Tg of the EMA copolymer occurring chronologically toward lower temperatures. The storage modulus of PP and the blends was generally greater with annealing at 150 °C compared with isothermal crystallization at 130 °C. The storage modulus of the blends for isothermally crystallized PP increased with 5% EMA, then decreased for higher amounts of EMA. Annealing caused a decrease with increasing copolymer content. The extent of the trend was greater for the compatibilized blends. The Tg of the blends varied over a small range, although this change was less for the compatibilized blends.

Storage modulus for PP and EMA9.0 blends annealed at 150 °C.  相似文献   


19.
The tensile deformation of materials with Poisson's ratio smaller than 0.5 generates an additional free volume, which means that tensile creep under constant stress and temperature is a non‐iso‐free volume process. Fractional free volume rising proportionally to the creep strain accounts for a continuous shortening of retardation times. To account for this effect, “internal” time has been introduced which is related to a hypothetical pseudo iso‐free‐volume state. The shift factor along the time scale in the time‐strain superposition is not constant for an isothermal creep curve, but rises monotonically from point to point with the elapsed creep time. The reconstructed compliance dependencies obtained for various stresses approximately obey the time‐strain superposition thus forming a generalised creep curve. A routinely used empirical equation has been found suitable to describe the effects of time and stress on compliance of parent polymers and their blends. The previously proposed predictive format for the time‐dependent compliance of polymer blends has been found applicable also to poly(propylene) (PP)/cycloolefin copolymer (COC) blends with fibrous morphology. As COC shows a tendency to form fibres in a PP matrix, the mixing rule customarily used for fibre composites has been found more appropriate for injection moulded specimens than the equivalent box model for isotropic blends. The predicted compliance curve for a pseudo iso‐free‐volume state can be transformed into a “real” curve for a selected stress σ (in the interval up to the yield stress).

SEM microphotograph of the fractured surface (perpendicular to the injection direction) of the PP/COC blend 60/40.  相似文献   


20.
Summary: The effect of electron‐beam (EB) irradiation on interfacial adhesion in bioflour (rice‐husk flour, RHF)‐filled poly(propylene) (PP) biocomposites in which either only the RHF had been EB irradiated or the whole biocomposite had been EB irradiated was examined at different EB‐irradiation doses. The tensile strengths of PP–RHF biocomposites with EB‐irradiated RHF and EB‐irradiated PP and PP–RHF biocomposites were slightly higher than those of the nonirradiated samples. The improved interfacial adhesion of PP–RHF biocomposites with EB radiated RHF and the EB‐irradiated PP–RHF biocomposites compared with the nonirradiated samples was confirmed by the morphological characteristics. In addition, the thermal stability of EB‐treated biocomposites was slightly higher than those of nonirradiated samples at the irradiation doses of 2 and 5 Mrad. However, at the high irradiation dose (30 Mrad), the tensile strengths of the biocomposites were slightly decreased by main‐chain scission (degradation) of PP and RHF. Attenuated total reflectance FT‐IR and X‐ray‐photoelectron‐spectroscopy findings confirmed this result by showing that that EB irradiation changed the functional groups of RHF, PP, and the biocomposites and improved the surface characteristics of the biocomposites. The thermal characteristics of the EB‐irradiated PP and biocomposites were investigated using differential scanning calorimetry. From the results, we concluded that use of low‐dose EB radiation increases the interfacial adhesion between matrix polymer and biofiller.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号