首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. K. Gautam  K. K. Kar 《Fuel Cells》2016,16(2):179-192
The most essential and costly component of polymer electrolyte membrane fuel cells is the bipolar plate. The production of suitable composite bipolar plates for polymer electrolyte membrane fuel cell with good mechanical properties and high electrical conductivity is scientifically and technically very challenging. This paper reports the development of composite bipolar plates using exfoliated graphite, carbon black, and graphite powder in resole‐typed phenol formaldehyde. The exfoliated graphite with maximum exfoliated volume of 570 ± 10 mL g−1 used in this study was prepared by microwave irradiation of chemically intercalated natural flake graphite in a few minutes. The composite plates were prepared by varying exfoliated graphite content from 10 to 35 wt.% in phenolic resin along with fixed weight percentage of carbon black (5 wt.%) and graphite powder (3 wt.%) by compression molding. The composite plates with filler weight percentage of 35/5/3/exfoliated graphite/carbon black/graphite powder offer in‐plane and trough‐plane electrical conductivities of 374.42 and 97.32 S cm−1, bulk density 1.58 g cm−3, compressive strength 70.43 MPa, flexural strength 61.82 MPa, storage modulus 10.25 GPa, microhardness 73.23 HV and water absorption 0.22%. Further, I–V characteristics notify that exfoliated graphite/carbon black/graphite powder/resin composite bipolar plates in unit fuel cell shows better cell performance compared exfoliated graphite/resin composite bipolar plates. The composite plates own desired mechanical properties with low bulk density, high electrical conductivity, and good thermal stability as per the U.S. department of energy targets at low filler concentration and can be used as bipolar plates for proton exchange membrane fuel cells.  相似文献   

2.
Exfoliated graphite (EG) was synthesized from natural flake graphite by acid treatment followed by microwave irradiation. A maximum expanded volume of 560 mL/g was achieved for this exfoliation of graphite. EG/phenolic resin composite bipolar plates for polymer electrolyte membrane fuel cell were fabricated with a high loading of EG by compression molding. The composites possess low density, high electrical conductivity, high thermal stability, and high compressive strength. The composite bipolar plates were also characterized by X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and so on. The composite prepared with 50 wt% of EG has shown the desired properties for bipolar plate as per the US Department of Energy (DOE‐2015) targets. As a result, the EG–resin composites can be used as bipolar plates for polymer electrolyte membrane fuel cell applications. POLYM. ENG. SCI., 55:917–923, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
A. Ghosh  A. Verma 《Fuel Cells》2014,14(2):259-265
Graphene reinforced carbon‐polymer composite bipolar plate is developed using resole phenol formaldehyde resin, and conductive reinforcements (natural graphite, carbon black, and carbon fiber) using compression molding technique. Graphene is reinforced into the composite to alter various properties of the composite bipolar plate. The developed composite bipolar plate is characterized and the effect of temperature on mechanical and electrical properties is investigated with an overall aim to achieve benchmark given by US‐DOE and Plug Power Inc. The flexural strength and electrical conductivity of the composites was almost stable with the increase in temperature upto 175 °C. The composite bipolar plate maintained high in‐plane and through‐plane electrical conductivities, which is about 409.23 and 98 S cm–1, respectively, at 175 °C. The flexural strength and shore hardness of the developed composite was around 56.42 MPa and 60, respectively, at 175 °C, and on further increase in the temperature the mechanical strengths deceases sharply. The electrical and mechanical properties of the composite bipolar plates are within the US‐DoE target. However, the various properties of the composite bipolar plate could not be sustained above 175 °C.  相似文献   

4.
赵若冬 《辽宁化工》2006,35(6):319-321
以热塑性聚丙烯树脂(PP),天然鳞片石墨(NG)为主要原料,采用模压工艺制备了NG/PP复合双极板,考察了不同模压压力、模压时间对双极板性能的影响。  相似文献   

5.
Electrically conductive polymer composites for bipolar plate were fabricated by two‐step compression molding technique. Raw materials consisted of natural graphite flakes (G), expanded graphite (EG), carbon black (CB), and phenol resin (PF). The G/EG/CB/PF composites were first compressed at a temperature lower than curing point (100°C) and then cured at a high temperature above curing point (150°C) and high pressure (10 MPa). Results showed that G and EG are oriented in the direction parallel to the composite plate surface. CB is dispersed not only in the phenol resin matrix but also in the packing and porous space of G and EG. The addition of EG and CB significantly increases number of the electrical channels and thus enhances the electrical conductivity of the composite. Under optimal conditions, electrical conductivity and flexural strength of the composite were 2.80 × 104 S/m and 55 MPa, respectively, suggesting that the dipolar plates prepared by two‐step compression molding technique are adequate to meet the requirement of proton exchange membrane fuel cells. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2296–2302, 2013  相似文献   

6.
Electrically and thermally conductive resins can be produced by adding carbon fillers. Mechanical properties such as tensile modulus, ultimate tensile strength, and strain at ultimate tensile strength are vital to the composite performance in fuel cell bipolar plate applications. This research focused on performing compounding runs followed by injection molding and tensile testing of carbon filled Vectra A950RX liquid crystal polymer composites. The four carbon fillers investigated included an electrically conductive carbon black, thermocarb synthetic graphite particles, and two carbon fibers (Fortafil 243 and Panex 30). For each different filler type, resins were produced and tested that contained varying amounts of these single carbon fillers. The carbon fiber samples exhibited superior tensile properties, with a large increase in tensile modulus over the base polymer, and very low drop in the ultimate tensile strength as the filler volume fraction was increased. The strain at the ultimate tensile strength was least affected by the addition of the Panex carbon fiber but was significantly affected by the Fortafil carbon fiber. In general, composites containing synthetic graphite did not perform as well as carbon fiber composites. Carbon black composites exhibited poor tensile properties. POLYM. COMPOS., 29:15–21, 2008. © 2007 Society of Plastics Engineers  相似文献   

7.
One emerging market for electrically conductive resins is for bipolar plates for use in fuel cells. Adding carbon fillers to thermoplastic resins increases composite electrical conductivity and viscosity. Current technology often adds as much of a single type of carbon filler as possible to achieve the desired conductivity, while still allowing the carbon‐filled thermoplastic matrix material to be extruded and molded into a bipolar plate. In this study, varying amounts of two different types of carbon, one carbon black and one synthetic graphite, were added to Vectra A950RX liquid crystal polymer. The resulting single filler composites were then tested for electrical conductivity and rheological properties. The electrical conductivity followed that typically seen in polymer composites with a percolation threshold at 4 vol % for carbon black and at 15 vol % for synthetic graphite. Over the range of shear rates studied, the viscosity followed a shear‐thinning power law model with power‐law exponent (n ? 1) = ?0.5 for neat Vectra A950RX and (n ? 1) = ?0.7 for highly filled composite materials. Viscosity increased with increasing filler volume fraction for all shear rates. The viscosity–enhancement effect was more rapid for the composites containing carbon black when compared with those containing synthetic graphite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2680–2688, 2006  相似文献   

8.
Thermally conductive resins are needed for bipolar plates in fuel cells. Currently, the materials used for these bipolar plates often contain a single type of graphite in a thermosetting resin. In this study, varying amounts of four different types of polyacrylonitrile carbon fillers (Ketjenblack carbon black, Thermocarb synthetic graphite, Fortafil 243 carbon fiber, and Panex 30 carbon fiber) were added to a thermoplastic matrix (Vectra A950RX Liquid Crystal Polymer), with the resulting resins tested for through‐plane and in‐plane thermal conductivity. There are two unique contributions of this work. The first contribution is the use of the Nielsen model for the through‐plane thermal conductivity as a function of the single filler volume fraction. The model fits the data for all composites well. The second contribution is the development of a new, accurate, empirical model to predict the in‐plane thermal conductivity for all resins containing synthetic graphite or carbon fiber. Both of these models will form the basis for the development of new thermal conductivity models for composites with multiple fillers for fuel cell bipolar plate applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
H. Wang  J. A. Turner 《Fuel Cells》2010,10(4):510-519
A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high‐volume, high‐speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends.  相似文献   

10.
The thermal conductivity of insulating polymers can be increased by the addition of conductive fillers. One potential market for these thermally conductive resins is for fuel cell bipolar plates. In this study, various amounts of three different carbon fillers (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid crystal polymer. Because the resulting composites were anisotropic, they were tested for both through‐plane and in‐plane thermal conductivities. The effects of single fillers and combinations of the different fillers were studied via a factorial design. Each single filler caused a statistically significant increase in composite through‐plane and in‐plane thermal conductivities at the 95% confidence level, with synthetic graphite causing the largest increase. All of the composites containing combinations of the different fillers caused statistically significant increases in the composite through‐plane and in‐plane thermal conductivities. It is possible that thermally conductive pathways were formed that linked these carbon fillers, which resulted in increased composite thermal conductivity. Composites containing 70, 75, and 80 wt % synthetic graphite and the composite containing all three fillers (2.5 wt % carbon black, 65 wt % synthetic graphite, and 5 wt % carbon fiber) had in‐plane thermal conductivities of 20 W m?1 K?1 or higher, which is desirable for bipolar plates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
This work attempts to develop a carbon black (CB) filled conductive polymer composite based on poly(ethylene terephthalate) (PET) and polypropylene (PP). The process follows by localizing the CB particles in the minor phase (PET), and then the conductive masterbatch was elongated to form conductive microfibrils in PP matrix during melt extrusion process. After compression molding, a fine conductive three‐dimensional microfibrillar network is constructed. For comparison purpose, CB, PET, and PP are mixed using different pattern. The morphology and the volume resistivity of the obtained composites are evaluated. Electrical conductivity investigation shows that the percolation threshold and resistivity values are dependent on the CB concentration. The best morphological observation shows that the PET phases forms well‐defined microfibrils, and CB particles overwhelmingly localize in the surfaces of the PET microfibrils, which led to a very low percolation threshold, i.e., 4.5 phr, and a reasonable conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Electrically conductive resins are needed for bipolar plates used in fuel cells. Currently, the materials for these bipolar plates often contain a single type of graphite powder in a thermosetting resin. In this study, various amounts of two different types of carbon, carbon black and synthetic graphite, were added to a thermoplastic matrix. The resulting single‐filler composites were tested for electrical conductivity, and electrical conductivity models were developed. Two different models, the Mamunya and additive electrical conductivity models, were used for both material systems. It was determined how to modify these models to reduce the number of adjustable parameters. The models agreed very well with experimental data covering a large range of filler volume fractions (from 0 to 12 vol % for the carbon black filled composites and from 0 to 65 vol % for the synthetic graphite filled composites) and electrical conductivities (from 4.6 × 10?17 S/cm for the pure polymer to 0.5 S/cm for the carbon black filled composites and to 12 S/cm for the synthetic graphite filled composites). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3293–3300, 2006  相似文献   

13.
The bipolar plate is one of the most imperative components of proton exchange membrane fuel cells (PEMFC) which consumes up to 80% of weight and near about 50% of the total cost of the cell. Development of cost‐effective composite bipolar plate with high electrical conductivity and high mechanical strength is both technically and economically demanding. In this paper, a low‐cost advanced composite bipolar plate is developed by bulk moulding compression (BMC) technique. It is clear from the experiments that by increasing the matrix volume fraction, bulk density and electrical conductivity of a composite bipolar plate decrease but shore hardness increases. Test results clearly show that best overall properties are achieved when a constant volume fraction of polymer matrix and natural graphite is reinforced with synthetic graphite, carbon black and carbon fibre. This bipolar plate was found to have high conductivity, less porosity and high mechanical strength. The IV characteristics in single cell test exhibited more uniform power density at both higher and lower current densities  相似文献   

14.
One emerging market for electrically conductive resins is for bipolar plates for use in fuel cells. Adding carbon fillers to thermoplastic resins increases composite electrical conductivity and viscosity. Current technology often adds as much of a single type of carbon filler as possible to achieve the desired conductivity, while still allowing the material to be extruded and molded into a bipolar plate. In this study, varying amounts of two different types of polyacrylonitrile (PAN) based carbon fiber (Fortafil 243 and Panex 30) were added to Vectra A950RX liquid crystal polymer. The resulting single fiber composites were then tested for electrical conductivity and rheological properties. The electrical conductivity followed the behavior typically seen in composites with a percolation threshold at 5 vol% for Fortafil 243 and at 13 vol% for Panex 30. Viscosity increased with increasing filler volume fraction for all shear rates, but was more rapid for the Fortafil 243 composites. Over the range of shear rates studied, the viscosity followed a shear‐thinning power law model with power‐law exponent (n – 1) = –0.5 for neat Vectra A950RX. Panex 30 had no effect on the power‐law exponent and Fortafil 243 changed (n – 1) to −0.6. POLYM. COMPOS., 28:168–174, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
石墨双极板由于制作成本高、易碎等不利因素严重制约直接甲醇燃料电池(DMFC)的发展。表面改性后的金属材料由于具备接触电阻低,加工强度高等优点而受到广泛关注。但是,迄今为止,国内少见改性金属双极板在DMFC中的研究报道。本文分别对金属及其氧化物、导电高分子、碳膜及金属碳化物、金属氮化物作为金属材料表面改性膜层进行了详述。基于改性金属双极板在模拟DMFC运行环境中的腐蚀原理,重点分析了表面改性前后金属双极板的抗腐蚀性能、接触电阻、表面涂层的成分及形态等关键参数,分析比较了改性涂层金属双极板对燃料电池运行中的电化学行为和寿命的影响。展望了表面改性金属双极板在DMFC中应用的研究趋势,为实现DMFC便携式发展奠定了良好的基础。  相似文献   

16.
石墨/酚醛树脂复合板与碳纸间接触电阻   总被引:1,自引:1,他引:0  
刘宗浩  许莉  王宇新 《化工学报》2006,57(2):403-408
应用模压工艺制备了质子交换膜燃料电池(PEMFC)用石墨/酚醛树脂(PF)复合板.通过四电极法测量了复合板与碳纸间的接触电阻.考察了接触压力、PF树脂含量及模压工艺条件对接触电阻的影响.结果表明,接触压力和PF树脂含量是对接触电阻有较大程度影响的两个重要因素.接触压力的增大导致接触电阻迅速减小,而随着PF树脂含量的增加,接触电阻有着非常快的增加趋势.模压压力对接触电阻已有一定程度的影响,但其影响幅度不如接触压力和树脂含量那么大.随着模压压力的增大,接触电阻的增加趋势比较缓慢.模压时间和模压温度对接触电阻基本没有影响.  相似文献   

17.
Adding conductive carbon fillers to insulating resins increases the composite electrical and thermal conductivity. Often, enough of a single type of carbon filler is added to achieve the desired conductivity while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid‐crystal polymer. The rheological properties of the resulting single‐filler composites were measured. In addition, the rheological properties of composites containing combinations of different carbon fillers were studied via a factorial design. In all cases, the viscosity increased with increasing filler volume fraction and followed a shear‐thinning power‐law model. The factorial design results indicated that each of the single fillers and all the filler combinations caused a statistically significant increase in the composite viscosity when compared at a shear rate of 500 s?1 or at a stress of 105 Pa. For composites containing synthetic graphite particles and/or carbon fiber, the viscosity variation with the volume fraction of carbon followed a modified Maron–Pierce equation. When compared at a constant volume fraction of carbon, composites containing carbon black showed viscosity enhancement above and beyond that shown by the other composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

19.
Electrically conductive resins may have applications as fuel cell bipolar plates. The current trend in this technology is a thermosetting polymer as the matrix containing high concentrations of various types of fillers. These fillers are carbon based and electrically conductive powders, particles, or fibers. In this study, we utilized two composite formulations of polyacrylonitrile fibers (Fortafil 243 and Panex 30) in a liquid crystal polymer (Vectra A950RX) with increasing concentrations. Electrical conductivity tests were performed and modified Mamunya and additive models were applied to the experimental data. These models fit the entire range of data for each composite tested. Four alternate models were also produced: linear, quadratic, exponential, and geometric, with a restricted range of electrical conductivity data greater than 10?2 S/cm. The exponential and the geometric resulted in the best fits over this restricted data range. These particular models may allow researchers to extrapolate beyond the maximum filler concentrations studied here. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Flow‐induced orientation of the conductive fillers in injection molding creates parts with anisotropic electrical conductivity where through‐plane conductivity is several orders of magnitude lower than in‐plane conductivity. This article provides insight into a novel processing method using a chemical blowing agent to manipulate carbon fiber (CF) orientation within a polymer matrix during injection molding. The study used a fractional factorial experimental design to identify the important processing factors for improving the through‐plane electrical conductivity of plates molded from a carbon‐filled cyclic olefin copolymer (COC) containing 10 vol% CF and 2 vol% carbon black. The molded COC plates were analyzed for fiber orientation, morphology, and electrical conductivity. With increasing porosity in the molded foam part, it was found that greater out‐of‐plane fiber orientation and higher electrical conductivity could be achieved. Maximum conductivity and fiber reorientation in the through‐plane direction occurred at lower injection flow rate and higher melt temperature. These process conditions correspond with foam flow during filling of the mold cavity, indicating the importance of shear stress on the effectiveness of a fiber being rotated out‐of‐plane during injection molding. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号