首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emission Fourier transform infrared (FTIR) spectroscopy has been found to be a suitable technique for monitoring the thermal cure of thin films of photocatalysed dicyanate ester resins. The kinetics of the polymerization of a commercial cyanate ester resin (AroCy RTX‐366) catalysed by an organometallic compound, tricarbonyl cyclopentadienyl manganese (CpMn(CO)3), have been determined using this technique and the results compared with those obtained from transmission FTIR. The trimerization reaction rate of the resin is found to have a first order dependence upon both the cyanate fraction and the active catalyst concentration until diffusion control occurs. To elucidate the mechanism, a system with premade catalyst, which was the photoreaction product of the resin and the organometallic compound, has also been studied. The activation energy for this system is 91 ± 10 kJ mol−1 compared to 72 ± 8 kJ mol−1 for the directly irradiated system. This may arise from different distributions of three photoproducts identified as complexes between manganese and the cyanate ester. © 2000 Society of Chemical Industry  相似文献   

2.
Cyanate esters are a class of thermal resistant polymers widely used as thermal resistant and electrical insulating materials for electric devices and structural composite applications. In this article, the effect of 2,2′‐diallyl bisphenol A (DBA) on catalyzing the thermal curing of cyanate ester resins was studied. The curing behavior, thermal resistance, and thermal mechanical properties of these DBA catalyzed cyanate ester resins were characterized. The results show that DBA is especially suitable for catalyzing the polymerization of the novolac cyanate ester resin (HF‐5), as it acts as both the curing catalyst through depressing the exothermic peak temperature (Texo) by nearly 100°C and the toughening agent of the novolac cyanate ester resin by slightly reducing the elastic modulus at the glassy state. The thermogravimetric analysis and dynamic mechanical thermal analysis show that the 5 wt % DBA‐catalyzed novolac cyanate ester resin exhibits good thermal resistance with Td5 of 410°C and the char yield at 900°C of 58% and can retain its mechanical strength up to 250°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1775–1786, 2006  相似文献   

3.
Blends of varying composition of a bisphenol A based cyanate ester—viz., 2,2‐bis‐(4‐cyanatophenyl) propane (BACY)—and a bisphenol A based bismaleimide—viz., 2,2‐bis[4‐(4‐maleimido phenoxy) phenyl] propane (BMIP)—were cured together in a sequential manner to derive bismaleimide–triazine network polymers. Enhancing the bismaleimide content was conducive for decreasing the tensile properties and improving both the flexural strength and fracture toughness of the cyanate ester‐rich neat resin blends. Although DMA analyses of the cured blend indicated a homogeneous network for the cyanate ester dominated compositions, microphase separation occurred on enriching the blend with the bismaleimide. Addition of bismaleimide did not result in any enhancement in Tg of the blend. Interlinking of the two networks and enhancing crosslink density through coreaction with 4‐cyanatophenyl maleimide impaired both the mechanical and fracture properties of the interpenetrating polymer network (IPN), although the Tg showed an improvement. Presence of the bismaleimide was conducive for enhancing the mechanical properties of the composites of the cyanate ester rich blend, whereas a higher concentration of it led to poorer mechanical properties due to the formation of a brittle interphase. The IPNs showed reduced moisture absorption and low dielectric constant and dissipation factor, the latter properties being independent of the blend composition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2737–2746, 1999  相似文献   

4.
The bisphenols containing methylene spacer were prepared by treating eugenol/2‐allyl phenol with 2,6‐dimethyl phenol/guiacol/o‐cresol in the presence of AlCl3. All the bisphenols were converted to their respective cyanate esters by treating with CNBr. The structural confirmation was done by FTIR, 1H NMR, 13C NMR spectral methods, and elemental analysis. Thermal characterization was done by DSC and TGA. DSC transition shows that the Tg is in the range of 208–239°C. The Tg is highest for the cyanate ester Cy(b) with symmetric structure. The Tg of the cured network depends on the length and symmetry of the monomer, Tg being higher for shorter and the para‐substituted monomers. The T10 values are in the range of 364–381°C. The char yield is in the range of 47–53%. From the char yield, the limiting oxygen index (LOI) value was determined, which is used to confirm the flame retardancy of the cyanate ester resins. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Study on cure reaction of the blends of bismaleimide and dicyanate ester   总被引:4,自引:0,他引:4  
Xiaoyun Liu 《Polymer》2006,47(11):3767-3773
In this work, the cure reaction of the blends of bisphenol A dicyanate ester (BADCy) and 4,4′-bismaleimidodiphenylmethane (BMI) was investigated by using DSC, in situ FTIR, DMA and generalized 2D correlation analysis. The results clarified that there existed different kinds of cure mechanism in the blends of bismaleimide and dicyanate ester. In non-catalyzed blends, the dicyanate ester and bismaleimide cured independently and formed two kinds of network: polycyanurate and polybismaleimide. A cyanate curing catalyst accelerated the cure of dicyanate ester but did not change the independent cure mechanism of two components. Moreover a commercial ring closure catalyst, which was usually used in the synthesis of bismaleimide, resulted in the co-reaction between two components and formed a homogeneous network. Thus, the cure mechanism of the blends of dicyanate ester and bismaleimide was related to the catalyst presented in the blends systems.  相似文献   

6.
The aim of this study was to improve thermal conductivity, thermal stability, and mechanical properties of bisphenol A dicyanate ester (BADCy) by adding bisphenol A dicyanate ester containing fluorine (F‐BADCy) and nano diamond. The cyanate esters containing fluorine/nano diamond composites having various ratios of BADCy, F‐BADCy, and nano diamond were prepared. Thermal stability and thermal conductivity of the samples were evaluated by thermogravimetric analysis, differential scanning calorimetry and laser flash method, respectively. The samples were characterized with the following analysis; gel content, water absorption capacity, and stress‐strain test. Hydrophobicity of the samples was determined by the contact angle measurements. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy (SEM). The obtained results prove that the cyanate ester containing fluorine/nano diamond composites have good thermal and mechanical properties and they can be used in many applications such as electronic devices, materials engineering, and other emergent. POLYM. COMPOS., 34:1977–1985, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
A series of azo functionalized diols were synthesized through diazotization which involves the reaction of amine with phenol and 2,6‐dimethyl phenol. Four different amines have been used to prepare five bisphenols. These bisphenols were converted to their corresponding cyanate esters by treatment with cyanogen bromide (BrCN) in the presence of triethylamine (Et3N). The chemical structures of the prepared compounds were characterized with Fourier Transform Infrared, 1H‐NMR, 13C‐NMR spectroscopy, and elemental analysis. Dynamic curing behavior was investigated using differential scanning calorimetry. The maximum curing temperature of these cyanate esters are in the range of (186–208°C). Tg values of the polycyanurate networks are in the range of 245–276°C. The thermal properties of cured cyanate ester were studied at a heating rate of 10°C min?1 in N2 atmosphere. The polymers showed excellent thermal stability (T10 was found to be in the range 405–438°C) and the percentage of char yield at 800°C were found to be 30–49. The flame retardancy of the cyanate ester resins have been studied using limited oxygen index value which is in the range of 29.5–37.1 at 800°C. POLYM. ENG. SCI., 55:47–53, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
The aim of this study was to improve thermal stability and surface properties of bisphenol A dicyanate ester (BADCy) by adding bisphenol S dicyanate ester (BSDCy) and Ba(BO2)2. Bisphenol S and bisphenol A cyanate ester/barium metaborate composites having various ratios of BADCy, BSDCy, and Ba(BO2)2 were prepared. Thermal stability of the samples was evaluated by thermogravimetric analysis and differential scanning calorimetry. Hydrophobicity of the samples was determined by the contact angle measurements. The samples were characterized with the following analysis; gel content, water absorption capacity. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy. The obtained results prove that the cyanate ester containing sulfonyl/Ba(BO2)2 composites have good thermal and surface properties and they can be used in many applications such as electronic devices, materials engineering, and other emergent. POLYM. COMPOS., 37:1312–1317, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
A series of bisphenols containing ether linkage were prepared from halo phenol/dihalo compound and dihydroxy compounds in the presence of K2CO3. The bisphenols were transformed to cyanate esters by treatment with cyanogen bromide using triethyl amine catalyst. The structure of all the five bisphenols and the cyanate esters were structurally confirmed by FT-IR, 1H-NMR and 13C-NMR spectral methods and elemental analysis. The cyanate esters were cured at 100 °C (30 min) → 150 °C (30 min) → 200 °C (60 min) → 250 °C (3 hr). The thermal properties of the cured resins were studied by DSC and TGA. DSC analysis shows that these cyanate esters exhibit T g in the range of 203–234 °C. The CE(c) has the highest glass transition temperature. The cyanate ester CE(e) shows the lowest T g which is due to its asymmetric structure. The initial degradation temperature of the cured resins was found to be in the range of 324–336 °C. The Limiting Oxygen Index (LOI) value, determined by Van Krevelen’s equation, is in the range of 35.5–38.7.  相似文献   

10.
Esters of castor oil and hydrogenated castor oil were prepared with C6, C12, C16, C18 fatty acids, using tetra‐n‐butyl titanate as a catalyst and n‐butyl benzene as a water entrainer. Physical properties such as melting point, refractive index, viscosity, and specific gravity of these esters were measured. Slip melting points of the esters were very low in both cases. These esters did not crystallize even at low temperature. The highest slip melting point obtained was 21 °C with stearoyl hydrogenated castor oil ester and lowest slip melting point obtained was —6 °C with hexanoyl castor oil ester.  相似文献   

11.
The encapsulated catalyst can be released under stimulation conditions to control the polymerization reaction. In this study, poly(urea‐formaldehyde) (PUF) microcapsules (MCs) filled with dibutyltin dilaurate (DBTDL) catalyst (PUF/DBTDL MCs) were applied to bisphenol A dicyanate ester (BADCy) resins to develop a novel low temperature cure high performance BADCy/MCs systems. The effect of PUF/DBTDL MCs on the reactivity of BADCy was investigated. The mechanical property, the thermal property, the water uptake, and the dielectric property of cured BADCy/MCs resin systems were discussed in detail. Results indicate that roughly varying the content of the encapsulated DBTDL can easily and safely adjust the polymerization temperature. The BADCy systems with proper content of MCs cured at low temperature show excellent mechanical property, good thermal property, low water uptake, and low dielectric property. When the content of MCs is 0.125 wt%, the cured BADCy/MCs system has the optimal integrated properties owing to the formation of more uniform crosslinked structure and high conversion of cyanate ester (? OCN) groups resulting from the slow release of DBTDL catalyst through the wall shell under heating condition. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
E-51环氧树脂改性双酚A型氰酸酯树脂的研究   总被引:3,自引:0,他引:3  
采用示差扫描量热法(DSC)、傅里叶变换红外光谱(FTIR)研究了E-51环氧树脂改性双酚A型氰酸酯树脂(BADCy)体系的反应活性、反应机理及固化工艺,通过TGA分析了不同含量E-51环氧树脂改性BADCy后固化物的热性能,并测定了体系的吸水率及力学性能。结果表明,随着E-51环氧树脂用量的增加,BADCy改性体系的反应活性逐渐提高,固化温度逐渐降低;用环氧树脂改性BADCy生成了恶唑烷酮等芳杂环结构,降低了氰酸酯树脂体系的三嗪环交联密度,增加了体系的韧性;改性后材料的起始热分解温度均在380℃以上,吸水率均低于2%。  相似文献   

13.
The N‐phenylmaleimide–styrene copolymer (PMS) was prepared and used to improve the brittleness of the cyanate ester resin. PMS was an effective modifier for improving the brittleness of the resin. The morphologies of the modified resins depended on PMS molecular weight and content. The most effective modification of the cyanate ester resin was attained because of the cocontinuous phase structure of the modified resin. Inclusion of 10 wt % PMS (Mw 133,000) led to an 160% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and the glass transition temperature, compared to the values for the unmodified resin. Low water absorptivity of the parent‐cured resin was not deteriorated by modification. The toughening mechanism was discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified cyanate ester resin system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2931–2939, 1999  相似文献   

14.
Chain extension of poly(ethylene terephthalate) (PET) with bisphenol‐A dicyanate (BADCy) was studied using an internal mixer under reactive blending conditions. The reaction between PET and BADCy was confirmed by Fourier transform infrared (FTIR) and chemical titration. With increasing amount of BADCy introduced, the modified PET gave rise to higher torque during stirred in an internal mixer, higher viscosity (η′), and higher storage modulus (G′). Measurement of intrinsic viscosity showed that BADCy indeed extended the molecular weight of PET. DSC analysis represented that Tm and Tc of the modified PET were shifted to low temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
To obtain modified cyanate ester (CE) with good comprehensive properties and low cost, a novel phenolic resin containing diphenyl oxide (MPF) with high molecular weight was synthesized from diphenyl ether, formaldehyde, methanol and phenol by a two-step process which differed from polyphenylene oxide (PPO) in structure. The curing reaction and properties of the modified 2,2-bis(4-cyanatophenyl) propane (bisphenol-A-based cyanate ester, BADCy) by MPF were investigated. It was found that the curing temperature of the modified CE was lower than that of the unmodified CE. When the ratio of MPF and BADCy was 3:7, the cured resin exhibited low dielectric constant (3.00), low dielectric loss (0.0062) and high impact strength (12.5 kJ/m2), and its T d5% was 371 °C, being superior to CE in the comprehensive properties. When the content of MPF was above 30 %, MPF/BADCy had poor comprehensive properties. In order to improve MPF/BADCy with high content of MPF, epoxy resin (E51) was added. When the ratio of MPF, BADCy and E51 was 50:50:67, the cured resin exhibited low dielectric constant (2.96), dielectric loss (0.0078) and high impact strength (11.84 kJ/m2), and its T d5% was 365 °C. Small content of MPF or the combination of E51 and MPF were good for BADCy to improve its comprehensive properties.  相似文献   

16.
N‐Phenylmaleimide–N‐(p‐hydroxy)phenylmaleimide–styrene terpolymer (HPMS), carrying reactive p‐hydroxyphenyl groups, was prepared and used to improve the toughness of cyanate ester resins. Hybrid modifiers composed of N‐phenylmaleimide–styrene copolymer (PMS) and HPMS were also examined for further improvement in toughness. Balanced properties of the modified resins were obtained by using the hybrid modifiers. The morphology of the modified resins depends on HPMS structure, molecular weight and content, and hybrid modifier compositions. The most effective modification of the cyanate ester resin was attained because of the co‐continuous phase structure of the modified resin. Inclusion of the modifier composed of 10 wt% PMS (Mw 136 000 g mol?1) and 2.5 wt% HPMS (hydroxyphenyl unit 3 mol%, Mw 15 500 g mol?1) led to 135% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and glass transition temperature, compared with the values for the unmodified resin. Furthermore, the effect of the curing conditions on the mechanical and thermal properties of the modified resins was examined. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified cyanate ester resin system. © 2001 Society of Chemical Industry  相似文献   

17.
Catalyst effects on cure reactions of a bismaleimide [4,4′‐bismaleimidodiphenylmethane (BMI)] associated with a liquid aromatic dicyanate ester [1,1′‐bis(4‐cyanatophenyl)ethane (BEDCy)] and with a powder type of aromatic dicyanate ester [bisphenol A dicyanate (BADCy)] were thoroughly investigated by in situ FTIR and DSC dynamic scanning. In noncatalyzed blend systems, coreactions between the dicyanate ester and bismaleimide always occur, and thus the formation of the pyrimidine and/or pyridine structures occurs. The pyrimidine structure always predominates. The use of a dicyanate‐sensitive catalyst facilitates the formation of a sequential interpenetrating network (IPN). The extent of the sequential IPN depends on the level of catalyst and the type of matrix materials, and thus the extent of coreactions. Probable reaction paths were also proposed for various formulations of hybrid blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 345–354, 2004  相似文献   

18.
Aromatic polyesters were prepared and used to improve the brittleness of the cyanate ester resin. The aromatic polyesters include poly(ethylene phthalate) (PEP) and poly(ethylene phthalate‐co‐1,4‐phenylene phthalate). The polyesters were effective modifiers for improving the brittleness of the cyanate ester resin. For example, inclusion of 20 wt % PEP (MW 19,800) led to a 120% increase in the fracture toughness (KIC) with retention in flexural properties and a slight loss of the glass transition temperature compared to the mechanical and thermal properties of the unmodified cured cyanate ester resin. The microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The thermal stability of the modified resins was lower than that of the unmodified resin as determined by thermogravimetric analysis. The water absorptivity of the modified resin increased significantly, compared to that of the unmodified cured cyanate ester resin. The toughening mechanism was discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified cyanate ester resin system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 208–219, 2000  相似文献   

19.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
在加热熔融的氰酸酯树脂(BADCy)中加入甲基丙烯酸甲酯(MMA)单体(同步合成法)或MMA预聚体(异步合成法)并引发使其发生本体聚合,制备了具有半互穿聚合物网络结构的氰酸酯树脂/聚甲基丙烯酸甲酯(BADCy/MMA-SIPN),通过力学性能测试,红外及DSC分析研究了MMA含量对体系力学性能和热性能的影响。结果表明,互穿网絡的形成使氰酸酯树脂体系的力学性能和耐热性能都有较大的提高,冲击强度、弯曲强度及玻璃化温度分别提高了97.8%、58.6%和65℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号