首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解决移动机器人在复杂环境中如何高效精确地躲避障碍物的问题,提出了一种基于BP神经网络的避障方法。建立了机器人的避障运动模型并设计了神经网络避障控制系统;分析了机器人在运动过程中与障碍物的位置关系,使用超声波传感器采集距离信息,进行BP神经网络输入、输出训练并采用Matlab工具进行仿真试验。结果表明,该方法可以高效精确地实现移动机器人的自主避障,运行相对稳定、轨迹连续平滑,达到了较为理想的避障效果。验证了方法的可行性和有效性,为移动机器人自主避障提供了一种新的控制方法。  相似文献   

2.
A new terrain‐inclination‐based localization technique is proposed in this paper to enable a robot to identify its three‐dimensional location relative to measurable terrain inclinations. Given a topographical map and a planned path, a robot‐terrain‐inclination model (RTI model) is extracted along the path on the terrain upon which the robot is operating. A particle filter is then used to fuse the measurement data with the robot motion based on the extracted RTI model for either a three‐wheeled or a four‐wheeled mobile robot. Experiments were carried out in four outdoor scenarios: one short path with different initial conditions and map resolution, another short path with different surface roughness and sensor accuracy, and two long paths with different types of rigid terrains and multiple loops. Experimental results show that the proposed method could achieve good localization performance on inclined outdoor terrains.  相似文献   

3.
This article presents a fast self-localization method based on ZigBee wireless sensor network and laser sensor, an obstacle avoidance algorithm based on ultrasonic sensors for a mobile robot. The positioning system and positioning theory of ZigBee which can obtain a rough global localization of the mobile robot are introduced. To realize accurate local positioning, a laser sensor is used to extract the features from environment, then the environmental features and global reference map can be matched. From the matched environmental features, the position and orientation of the mobile robot can be obtained. To enable the mobile robot to avoid obstacle in real-time, a heuristic fuzzy neural network is developed by using heuristic fuzzy rules and the Kohonen clustering network. The experiment results show the effectiveness of the proposed method.  相似文献   

4.
提出一种基于双分辨率2.5D分层栅格地图的Secure A*(SA*)路径规划方法,以解决移动机器人在非平坦地形下的安全路径规划问题.首先,设计一种双分辨率2.5D分层栅格地图,利用双分辨率栅格对环境中的障碍物信息与高程信息进行存储,以节约地图的存储空间;然后,结合移动机器人运动能力,将环境中的高程信息转化为约束因子,...  相似文献   

5.
This paper presents a stochastic map building method for mobile robot using a 2-D laser range finder. Unlike other methods that are based on a set of geometric primitives, the presented method builds a map with a set of obstacle regions. In building a map of the environment, the presented algorithm represents the obstacles with a number of stochastic obstacle regions, each of which is characterized by its own stochastic parameters such as mean and covariance. Whereas the geometric primitives based map sometimes does not fit well to sensor data, the presented method reliably represents various types of obstacles including those of irregular walls and sets of tiny objects. Their shapes and features are easily extracted from the stochastic parameters of their obstacle regions, and are used to develop reliable navigation and obstacle avoidance algorithms. The algorithm updates the world map in real time by detecting the changes of each obstacle region. Consequently, it is adequate for modeling the quasi-static environment, which includes occasional changes in positions of the obstacles rather than constant dynamic moves of the obstacles. The presented map building method has successfully been implemented and tested on the ARES-II mobile robot system equipped with a LADAR 2D-laser range finder.  相似文献   

6.
在移动机器人环境建图中,动态障碍物的存在直接影响传感器的读数,导致产生不一致的环境地图,因此,移动机器人构建地图必须滤除动态障碍物干扰。采用直线插补的方法在先前的局部图上搜寻机器人与目标点之间是否存在障碍物,若存在障碍,则可判定该障碍物已移走(即为动态障碍),应该予以滤除。实验结果证明,该方法能在建图过程中有效地滤除动态障碍,并能有效减少静态障碍物探测的误差累积,算法复杂度小。  相似文献   

7.
Joint simultaneous localization and mapping (SLAM) constitutes the basis for cooperative action in multi‐robot teams. We designed a stereo vision‐based 6D SLAM system combining local and global methods to benefit from their particular advantages: (1) Decoupled local reference filters on each robot for real‐time, long‐term stable state estimation required for stabilization, control and fast obstacle avoidance; (2) Online graph optimization with a novel graph topology and intra‐ as well as inter‐robot loop closures through an improved submap matching method to provide global multi‐robot pose and map estimates; (3) Distribution of the processing of high‐frequency and high‐bandwidth measurements enabling the exchange of aggregated and thus compacted map data. As a result, we gain robustness with respect to communication losses between robots. We evaluated our improved map matcher on simulated and real‐world datasets and present our full system in five real‐world multi‐robot experiments in areas of up 3,000 m2 (bounding box), including visual robot detections and submap matches as loop‐closure constraints. Further, we demonstrate its application to autonomous multi‐robot exploration in a challenging rough‐terrain environment at a Moon‐analogue site located on a volcano.  相似文献   

8.
基于视差平面分割的移动机器人障碍物地图构建方法   总被引:1,自引:0,他引:1  
作为自主移动机器人地表障碍物探测(GPOD)技术的一部分,提出了一种利用双目摄像机的视差图像 获取信息来构建机器人前方障碍物栅格地图的方法. 该方法融合了3 维立体视觉技术以及2 维图像处理技术,前者 依据视差图的直方图信息对视差图像进行自适应平面分割,把每个平面看作是3 维场景中的实物切片进而提取障碍 物3 维信息,后者通过计算各平面上的障碍物信息曲线来提取障碍物信息,把立体视觉数据从视差图像空间变换到 2 维的障碍物地图空间. 给出了该方法构建障碍物地图的整体过程,试验结果证明了该算法的有效性和精确性.  相似文献   

9.
Cloud robotics is the application of cloud computing concepts to robotic systems. It utilizes modern cloud computing infrastructure to distribute computing resources and datasets. Cloud‐based real‐time outsourcing localization architecture is proposed in this paper to allow a ground mobile robot to identify its location relative to a road network map and reference images in the cloud. An update of the road network map is executed in the cloud, as is the extraction of the robot‐terrain inclination (RTI) model as well as reference image matching. A particle filter with a network‐delay‐compensation localization algorithm is executed on the mobile robot based on the local RTI model and the recognized location both of which are sent from the cloud. The proposed methods are tested in different challenging outdoor scenarios with a ground mobile robot equipped with minimal onboard hardware, where the longest trajectory was 13.1 km. Experimental results show that this method could be applicable to large‐scale outdoor environments for autonomous robots in real time.  相似文献   

10.
The local minima problem occurs when a robot navigating past obstacles towards a desired target with no priori knowledge of the environment gets trapped in a loop. This happens especially if the environment consists of concave obstacles, mazes, and the like. To come out of the loop the robot must comprehend its repeated traversal through the same environment, which involves memorizing the environment already seen. This paper proposes a new real‐time collision avoidance algorithm with the local minima problem solved by classifying the environment based on the spatio‐temporal sensory sequences. A double layered classification scheme is adopted. A fuzzy rule base does the spatial classification at the first level and at the second level Kohonen's self‐organizing map and a fuzzy ART network is used for temporal classification. The robot has no prior knowledge of the environment and fuzzy rules govern its obstacle repulsing and target attracting behaviors. As the robot traverses the local environment is modeled and stored in the form of neurons whose weights represent the spatio‐temporal sequence of sensor readings. A repetition of a similar environment is mapped to the same neuron in the network and this principle is exploited to identify a local minima situation. Suitable steps are taken to pull the robot out of the local minima. The method has been tested on various complex environments with obstacle loops and mazes, and its efficacy has been established. © 2000 John Wiley & Sons, Inc.  相似文献   

11.
The MagneBike inspection robot is a climbing robot equipped with magnetic wheels. The robot is designed to drive on three‐dimensional (3D) complexly shaped pipe structures; therefore it is necessary to provide 3D visualization tools for the user, who remotely controls the robot out of sight. The localization system is required to provide a 3D map of the unknown environment and the 3D location of the robot in the environment's map. The localization strategy proposed in this paper consists of combining 3D odometry with 3D scan registration. The odometry model is based on wheel encoders and a three‐axis accelerometer. Odometry enables the tracking of the robot trajectory between consecutive 3D scans and is used as a prior for the scan matching algorithm. The 3D scan registration facilitates the construction of a 3D map of the environment and refines the robot position computed with odometry. This paper describes in detail the implementation of the localization concept. It presents the lightweight, small‐sized 3D range finder that has been developed for the MagneBike. It also proposes an innovative 3D odometry model that estimates the local surface curvature to compensate for the absence of angular velocity inputs. The different tools are characterized in detail based on laboratory and field experiments. They show that the localization concepts reliably track the robot moving in the specific application environment. We also describe various techniques to optimize the 3D scanning process, which is time consuming, and to compensate for the identified limitations. These techniques are useful inputs for the future automatization of the robot's control and optimization of its localization process. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
A reactive navigation system for an autonomous mobile robot in unstructured dynamic environments is presented. The motion of moving obstacles is estimated for robot motion planning and obstacle avoidance. A multisensor-based obstacle predictor is utilized to obtain obstacle-motion information. Sensory data from a CCD camera and multiple ultrasonic range finders are combined to predict obstacle positions at the next sampling instant. A neural network, which is trained off-line, provides the desired prediction on-line in real time. The predicted obstacle configuration is employed by the proposed virtual force based navigation method to prevent collision with moving obstacles. Simulation results are presented to verify the effectiveness of the proposed navigation system in an environment with multiple mobile robots or moving objects. This system was implemented and tested on an experimental mobile robot at our laboratory. Navigation results in real environment are presented and analyzed.  相似文献   

13.
Multi‐dimensional data originate from many different sources and are relevant for many applications. One specific sub‐type of such data is continuous trajectory data in multi‐dimensional state spaces of complex systems. We adapt the concept of spatially continuous scatterplots and spatially continuous parallel coordinate plots to such trajectory data, leading to continuous‐time scatterplots and continuous‐time parallel coordinates. Together with a temporal heat map representation, we design coordinated views for visual analysis and interactive exploration. We demonstrate the usefulness of our visualization approach for three case studies that cover examples of complex dynamic systems: cyber‐physical systems consisting of heterogeneous sensors and actuators networks (the collection of time‐dependent sensor network data of an exemplary smart home environment), the dynamics of robot arm movement and motion characteristics of humanoids.  相似文献   

14.
针对移动机器人的避障问题,以AS-R移动机器人为研究平台,提出了一种将神经网络和模糊神经网络相结合的两级融合方法。采用BP神经网络对多超声波传感器信息进行融合,以减少传感器信息的不确定,提高对障碍物识别的准确率;采用模糊神经网络实现移动机器人的避障决策控制,使之更适合系统的避障要求。该方法使移动机器人在避障中具有较好的灵活性和鲁棒性。机器人避障实验验证了所提方法的有效性。  相似文献   

15.
This paper deals with the obstacle avoidance problem for spatial hyper‐redundant manipulators in known environments. The manipulator is divided into two sections, a proximal section that has not entered the space among the obstacles and a distal section among the obstacles. Harmonic potential functions are employed to achieve obstacle avoidance for the distal section in three‐dimensional space in order to avoid local minima in cluttered environments. A modified panel method is used to generate the potential of any arbitrary shaped obstacle in three‐dimensional space. An alternative backbone curve concept and an efficient fitting method are introduced to control the trajectory of proximal links. The fitting method is recursive and avoids the complications involved with solving large systems of nonlinear algebraic equations. The combination of a three‐dimensional safe path derived from the harmonic potential field and the backbone curve concept leads to an elegant kinematic control strategy that guarantees obstacle avoidance. © 2003 Wiley Periodicals, Inc.  相似文献   

16.
In this paper, an adaptive neural network control system is developed for a nonlinear three‐dimensional Euler‐Bernoulli beam with unknown control direction. The Euler‐Bernoulli beam is modeled as a combination of partial differential equations (PDEs) and ordinary differential equations (ODEs). Adaptive radial basis function–based neural network control laws are designed to determine approximation of disturbances. A projection mapping operator is adopted to realize bounded approximation of disturbances. A Nussbaum function is introduced to compensate for the unknown control direction. The goal of this study is to suppress the vibrations of the Euler‐Bernoulli beam in three‐dimensional space. In addition, unknown control direction problem and bounded disturbances are considered to guarantee that the signals of the system are uniformly bounded. Numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

17.
We present a simultaneous localization and mapping (SLAM) algorithm that uses Bézier curves as static landmark primitives rather than feature points. Our approach allows us to estimate the full six degrees of freedom pose of a robot while providing a structured map that can be used to assist a robot in motion planning and control. We demonstrate how to reconstruct the three‐dimensional (3D) location of curve landmarks from a stereo pair and how to compare the 3D shape of curve landmarks between chronologically sequential stereo frames to solve the data association problem. We also present a method to combine curve landmarks for mapping purposes, resulting in a map with a continuous set of curves that contain fewer landmark states than conventional point‐based SLAM algorithms. We demonstrate our algorithm's effectiveness with numerous experiments, including comparisons to existing state‐of‐the‐art SLAM algorithms.  相似文献   

18.
针对现有移动机器人在视觉避障上存在的局限,将深度学习算法和路径规划技术相结合,提出了一种基于深层卷积神经网络和改进Bug算法的机器人避障方法;该方法采用多任务深度卷积神经网络提取道路图像特征,实现图像分类和语义分割任务;其次,基于语义分割结果构建栅格地图,并将图像分类结果与改进的Bug算法相结合,搜索出最优避障路径;同时,为降低冗余计算,设计了特征对比结构来对避免对重复计算的特征信息,保障机器人在实际应用中实时性;通过实验结果表明,所提方法有效的平衡了多视觉任务的精度与效率,并能准确规划出安全的避障路径,辅助机器人完成导航避障。  相似文献   

19.
研究室内未知环境下的移动机器人自主探索问题,并提出改进策略.首先,提出一种基于可通行区域的探索目标点快速提取方法,以补充原有方法在特殊环境结构下出现的提取探索目标点失败的缺陷;然后,提出一种基于激光数据和栅格地图信息的实时拓扑地图构建与优化方法,使得探索地图更加精简,探索过程更加高效;最后,通过改进的避障模块实现机器人的运动控制,以到达机器人安全探索的目标.同时,该系统采取机器人操作系统(Robot operating system, ROS)下的分布式结构,将整体算法合理分配到客户端和服务器,降低系统实现的硬件要求.现场实验表明,所提出方法具有良好的自主导航性能,在较复杂的室内未知环境下,仍能保持良好的地图构建能力和避障能力.  相似文献   

20.
为了在复杂舞台环境下使用移动机器人实现物品搬运或者载人演出,提出了一种基于深度强化学习的动态路径规划算法。首先通过构建全局地图获取移动机器人周围的障碍物信息,将演员和舞台道具分别分类成动态障碍物和静态障碍物。然后建立局部地图,通过LSTM网络编码动态障碍物信息,使用社会注意力机制计算每个动态障碍物的重要性来实现更好的避障效果。通过构建新的奖励函数来实现对动静态障碍物的不同躲避情况。最后通过模仿学习和优先级经验回放技术来提高网络的收敛速度,从而实现在舞台复杂环境下的移动机器人的动态路径规划。实验结果表明,该网络的收敛速度明显提高,在不同障碍物环境下都能够表现出好的动态避障效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号