首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: In order to produce nanometer‐sized fibers at an industrial scale, not only the morphology but also the production rate of fibers is important. The effect of solvent properties and functionality on the production rate of electrospun PS nanofibers was investigated using eighteen different solvents. The solution concentration was varied between 10 and 30% w/v. Electrospinning of PS solutions was carried out at various applied voltages and tip‐to‐collector distances The production rate of the obtained PS nanofibers was quantified in terms of electrospinnability. We found that the chance for the resulting PS solution to be spinnable is greater for solvents with high dipole moment and low viscosity. The solvent that provided the highest electrospinnability for polystyrene was DMF and the functionalities that promoted high dipole moment and thus high spinnability were the carbonyl group and the nitrogen group with free electrons. General guidelines for choosing suitable solvents for successful production of electrospun nanofibers have also been proposed.

SEM image of PS 685D at 200× magnification and the %‐coverage of the fibers obtained by using DMF, chloroform, and 1,4‐dioxane.  相似文献   


2.
Poly(ethylene oxide) (PEO) nanofibers were prepared by electrospinning PEO solution with a mixed solvent of ethanol and deionized water. The results show that the mixed solvent system has noteworthy influences on structures and properties of electrospun PEO nanofibers, including molecular chain orientation, crystallinity degree, surface morphology, fiber diameter, diameter distribution, spinnability, and productivity. With increasing ethanol content in the mixed solvent, wrinkly morphologies appear on the surface of PEO nanofibers due to a high evaporation rate of ethanol during electrospinning process. The dielectric constant, dipole moment, conductivity, density, boiling point, and solubility parameter of the mixed solvent become lower with the ethanol content increasing. Besides, the hydrogen‐bonding interactions between PEO and solvents become weaker. As a result, PEO nanofibers with larger diameters, lower molecular chain orientation, and crystallinity degree are obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45787.  相似文献   

3.
Fiber formation from atactic polystyrene (aPS) and alternating poly(styrene‐maleic anhydride) (PSMA) synthesized by free radical polymerization (AIBN, 90°C, 4 h) were investigated by electrospinning from various solutions. aPS was soluble in dimethylformamide (DMF), tetrahydrofuran (THF), toluene, styrene, and benzene, whereas PSMA was soluble in acetone, DMF, THF, dimethylsulfoxide (DMSO), ethyl acetate, and methanol. aPS fibers could be electrospun from 15 to 20% DMF and 20% THF solutions, but not from styrene nor toluene. PSMA, on the other hand, could be efficiently electrospun into fibers from DMF and DMSO at 20 and 25%, respectively. Few PSMA fibers were, however, produced from acetone, THF, or ethyl acetate solutions. Results showed that solvent properties and polymer–solvent miscibility strongly influenced the fiber formation from electrospinning. The addition of solvents, such as THF, generally improved the fiber uniformity and reduced fiber sizes for both polymers. The nonsolvents, however, had opposing effects on the two polymers, i.e., significantly reducing PSMA fiber diameters to 200 to 300 nm, creating larger and irregularly shaped aPS fibers. The ability to incorporate the styrene monomer and divinylbenzene crosslinker in aPS fibers as well as to hydrolyze PSMA fibers with diluted NaOH solutions demonstrated potential for post‐electrospinning reactions and modification of these ultrafine fibers for reactive support materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A screening study of the solubility of poly(1,1-difluoroethylene) (PVF2, M?w = 2 × 105) at room temperature in a wide variety of dipolar aprotic species has facilitated the discovery of a series of new solvents (N-methyloxazolidone, cyclic-substituted ureas) and rationalization of the data in a two-dimensional solubility map involving their dipole moment, μ, and their hydrogenx-bond-accepting (HBA) power β (Taft solvatochromic parameter). This map may be used as a predictive tool for the research of new functional classes of solvents, such as N-substituted mixed amideester of phosphoric acid or N-substituted sulfurous diamides. The variations of the intrinsic viscosity of the polymer with solvent polarity may be quantitatively analyzed using a linear multiparametric correlation which emphasizes the two opposite contributions of cavitation effects (Hildebrand solubility parameter δ) and of polymer–solvent interactions (β) on the coil expansion: [η] (dL.g?1) = 0.792 - 1.2 × 10?3δ2(J.cm?3) + 1.59 β. Finally, 1,3-dimethyl-2-oxo-hexahydropyrimidine (N,N′-dimethylpropylene urea) leads to the highest value of the refractive index increment (dn/dc = ?0.065 mL.g?1 at λ = 632 nm), and thus appears as the best solvent for light-scattering measurements.  相似文献   

5.
Summary A new recycling technique has been developed. In this method, EPS (expanded polystyrene), generally called Styrofoam, is dissolved with natural solvent, d-limonene and electrospun. This method can economically produce the nanofibers. The electrospinning process produces a nonwoven mat of long polymer fibers with diameters in the range of 10–500 nm and high surface areas per unit mass. PS (Polystyrene) polymer dissolved in different solvents such as THF (Tetrahydrofuran), DMF (Dimethylformaide), and DMAc (Dimethylacetamide) etc. may all be electrospun into nanofibers. These solvents cause environmental problem and difficulty of process handling. Natural solvent, d-limonene is used for dissolving PS. PS nanofibers are produced with PS solution using d-Limonene. This paper describes the use of polystyrene (PS) nanofibers electrospun from recycled EPS solution dissolved in d-limonene. The electrospun polystyrene nanofiber diameters vary from 300 to 900 nm, with an average diameter of about 700 nm.  相似文献   

6.
In this study, the effects of different solvents on the morphology and permeation of poly(ether‐block‐amide) (Pebax‐1657) membranes were investigated. Pebax membranes were fabricated via a solution casting method with five different solvents, that is, N,N‐dimethyl formamide (DMF), N,N‐dimethyl acetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), formic acid, and a mixture of ethanol (EtOH) with water (H2O). Cross‐sectional scanning electron microscopy analysis of the membranes was performed to investigate the morphology of the prepared membranes. X‐ray diffraction and Fourier transform infrared analysis were also carried out to characterize the membranes. The interactions of the polymer and various solvents were evaluated with Hansen solubility parameters. Permeation experiments for CO2 and CH4 gases were performed to study the effects of the solvents on the permeation properties of the membranes. The solvent properties, such as the molar volume, boiling point, and solubility parameters, were investigated as were the membranes characteristics, such as the crystallinity, d‐spacing, and fractional free volume. The results obtained from the experiments show that the CO2 permeability for the membranes prepared with different solvents followed this order: NMP > DMF > Formic acid > DMAc > H2O/EtOH mixture. With increasing molar volume, the gas permeability increased for all of the membranes, except for DMAc, which showed a lower permeability because of its highly crystalline structure. DMF showed a higher CO2/CH4 ideal selectivity compared to the other membranes and, consequently, could be introduced as the best solvent from all aspects for the Pebax‐1657 membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44531.  相似文献   

7.
In order to further decrease the cost and enhance the durability of sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery, a super thin (40 μm) polytetrafluoroethylene (PTFE)/SPEEK (PS) membrane is prepared. The physico‐chemical properties and single cell performance of PS membranes prepared with different casting solvents including NMP (N‐methyl‐2‐pyrrolidone), DMF (N,N′‐dimethylformamide), and DMAc (N,N′‐dimethylacetamide) have been investigated. Results show that the energy efficiency of VRB with PS/DMF can reach up to 91.2% at the current density of 40 mA cm?2, which is 11.1% and 6.4% higher than that of the commercial Nafion 212 and pristine SPEEK membrane, respectively. In addition, charge–discharge test over 150 times proves that the PS/DMF membrane possesses high stability and thus it is suitable for VRB application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43593.  相似文献   

8.
This paper reports a series of sequential post‐treatments using a polar solvent formamide to enhance the thermoelectric performance of poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT:PSS). The electrical conductivity of PEDOT:PSS films significantly increases from 0.33 S cm?1 for the pristine film to ≈2929 S cm?1 for the treated film and meanwhile the Seebeck coefficient maintains as high as 17.4 µV K?1, resulting in a power factor of 88.7 µW m?1 K?2. Formamide is a polar solvent with a high boiling point of 210 °C and high dielectric constant of 109, and PSS has a good solubility in it. Post‐treatment with formamide causes not only the phase segregation of PEDOT and PSS but also the removal of insulating PSS, therefore leading to the reorientation of PEDOT chains and enhancement in mobility without altering the doping level considerably. The cross‐plane thermal conductivity also reduces from 0.54 to 0.19 W m?1 K?1 after the post‐treatment, leading to a figure of merit (ZT) value of 0.04 at room temperature.  相似文献   

9.
Phase separation phenomena of polyetherimide (PEI)/solvent/nonsolvent systems were investigated by measuring their precipitation values over the temperature range from 20 to 50°C. The solvents used are N‐methyl‐2‐pyrrolidone (NMP), dimethylacetamide (DMAC), and dimethylformamide (DMF). Nine nonsolvents were employed including water, methanol, ethanol, 1‐propanol, 2‐propanol, acetic acid, propionic acid, ethylene glycol, and diethylene glycol. Based on the measured precipitation values, critical solubility parameters for PEI were calculated, and the partial solubility boundary for PEI was obtained in a two‐dimensional solubility parameter coordinate graph. The relationship between solvent strength and membrane structure was examined using PEI hollow‐fiber membranes prepared from binary polymer solutions containing NMP, DMAC, and DMF as solvents. Water was used both as internal and external coagulants. The cross‐sectional structure and gas permeation properties of these hollow fibers were examined. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1789–1796, 1999  相似文献   

10.
FeCl3 coordinated by succinic acid was used as the catalyst for the first time in azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile (AN). N,N‐dimethylformamide (DMF) was used as a solvent to improve the solubility of the ligand. A FeCl3 to succinic acid ratio of 0.5 not only gives the best control of molecular weight and its distribution but also provides rather rapid reaction rate. Effects of different solvents on polymerization of AN were also investigated. The rate of the polymerization in DMF is faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agrees reasonably well with the theoretical molecular weight in DMF. The rate of polymerization increases with increasing the polymerization temperature, and the apparent activation energy was calculated to be 64.8 kJ mol?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 32–36, 2006  相似文献   

11.
The triblock energetic copolymer poly(lactic acid)‐block‐(glycidylazide polymer)‐block‐polystyrene (PLA‐b‐GAP‐b‐PS) was synthesized successfully through atom‐transfer radical polymerization (ATRP) of styrene and ring‐opening polymerization of d,l ‐lactide. The energetic macroinitiator GAP‐Br, which was made from reacting equimolar GAP with α‐bromoisobutyryl bromide, firstly triggered the ATRP of styrene with its bromide group, and then the hydroxyl group on the GAP end of the resulting diblock copolymer participated in the polymerization of lactide in the presence of stannous octoate. The triblock copolymer PLA‐b‐GAP‐b‐PS had a narrow distribution of molecular weight. In the copolymer, the PS block was solvophilic in toluene and improved the stability of the structure, the PLA block was solvophobic in toluene and served as the sacrificial component for the preparation of porous materials, and GAP was the basic and energetic material. The three blocks of the copolymer were fundamentally thermodynamically immiscible, which led to the self‐assembly of the block copolymer in solution. Further studies showed that the concentration and solubility of the copolymer and the polarity of the solvent affected the morphology and size of the micelles generated from the self‐assembly of PLA‐b‐GAP‐b‐PS. The micelles generated in organic solvents at 10 mg mL?1 copolymer concentration were spherical but became irregular when water was used as a co‐solvent. The spherical micelles self‐assembled in toluene had three distinct layers, with the diameter of the micelles increasing from 60 to 250 nm as the concentration of the copolymer increased from 5 to 15 mg L?1. © 2017 Society of Chemical Industry  相似文献   

12.
This study investigates the effect of solvent properties on the structural morphology and permeation properties of polysulfone/β‐cyclodextrin polyurethane (PSf/β‐CDPU) mixed‐matrix membranes (MMMs). The membranes were prepared by a modified phase‐inversion route using four different casting solvents [dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), dimethyl acetamide (DMA), and N‐methyl‐2‐pyrrolidone (NMP)]. While DMSO‐based membranes demonstrated particularly high permeability (ca 147 L/m2h.bar), their crystallinity was low compared to MMMs prepared using DMA, DMF and NMP due to the formation of thin active layers on their surfaces. Cross‐sectional morphology revealed that the MMMs have a dense top skin with finger‐like inner pore structures. Membranes prepared using NMP displayed the highest hydrophilicity, porosity, and crystallinity due to the low volatility of NMP; DMF membranes exhibited superior mechanical and thermal stability due to its (DMF) high hydrogen bonding (δH) values. Thus, the morphological parameters, bulk porosity, and flux performance of MMMs have a significant inter‐relationship with the solubility properties of each solvent (i.e., δH, density, volatility, solubility parameter). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2005–2014, 2013  相似文献   

13.
Solution behavior of Na sulfonated polystyrene (NaSPS) ionomers with different percentages of sulfonate was studied by viscosity and dipole moment measurements. Two solvents of different character were chosen, i.e. dioxane (? = 2.22) and dimethyl formamide (DMF, ? = 36) and their mixtures. The reduced viscosity as a function of concentration in polar solvents reflects the ‘polyelectrolyte’ behaviour of the ionomers. Mean-squared dipole moment (<μ2>/x) values were calculated over a temperature range of 20–100°C, in dioxane and in a mixture of 4% DMF in dioxane. The results confirm the ‘polyelectrolyte’ behavior of ionomers by the addition of a small amount of polar cosolvent. The effect of increasing temperature on <μ2>/x in the DMF-dioxane mixture is attributed to the formation of a coordination complex.  相似文献   

14.
Poly vinylidene fluoride (PVDF) membranes were prepared via supercritical CO2 induced phase separation. The effects of solvent power on PVDF membrane morphology and polymorphism were investigated using N‐N‐dimethylformamide (DMF), triethyl phosphate (TEP), and their mixture respectively. The morphology evolution including cross‐section and surfaces were thoroughly studied by scanning electron microscope (SEM) and atomic force microscopy (AFM). The differences of solubility parameters between the solvent and PVDF affected the phase separation and the resultant morphology. The various crystalline phases of the membranes were mainly investigated by Fourier transform infrared spectroscopy (FTIR) and X‐ray diffractometer (XRD). Solvent with larger dipole moment tended to form polar β phase. Decreasing the difference of solubility parameters favored the formation of α phase. Furthermore, the effects of salt additive on PVDF membrane morphology and crystalline form were studied as well. Results turned out that lithium chloride (LiCl) induced a porous top surface and boosted the formation of β phase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41065.  相似文献   

15.
Poly(allylamine) (PAlAm) gel was prepared by γ‐ray irradiation. Swelling behavior of the charged PAlAm gels having Cl? and NO3? counter‐ions (PAlAmHCl and PAlAmHNO3, respectively) was investigated in aqueous organic solvent mixtures as functions of solvent species (dimethylsulfoxide (DMSO), methanol (MeOH), ethanol (EtOH), 2‐propanol (2PrOH), tert‐butanol (tert‐BuOH), acetone, tetrahydrofuran (THF) and dioxane) and the concentration. With increasing solvent concentration, the gels (except for the DMSO system) showed a sharp deswelling comparable to the volume phase transition. The solvent specificity for the PAlAmHNO3 gel transition was correlated with the dielectric constant of the organic solvents, while that for the PAlAmHCl gel suggested that solvency for the counter anion is another important factor. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

17.
The submicron fibers were prepared via electrospinning the styrene–isoprene–styrene (SIS) triblock copolymer from a pure solvent of tetrahydrofuran (THF) and a mixed solvent of THF and N, N‐dimethylformamide (DMF). The addition of DMF to THF resulted in a beneficial effect on the fiber formation and the electrospinnability. The obtained results revealed that the fibers were only formed in a narrow solution concentration range of 8–15 wt %; the morphology, diameter, structure, and mechanical performance of as‐spun fibers from PS and SIS solutions were affected by the composition weight ratio and the solution properties; and those from the solution at the intermediate concentration of 10 wt % exhibited a maximum tensile strength and strain at break. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
This study focused on the preparation of electrospun polystyrene (PS) nanofibers. PS solutions were prepared in single (dimethylformamide; DMF, dimethylacetamide; DMAc or tetrahydrofuran; THF) and mixed solvent (DMF/THF and DMAc/THF) systems with and without tetrabutylammonium bromide (TBAB) salt. The effects of PS concentration, solvent system, the addition of salt, appearance and diameter of PS fibers were examined. The average diameter of the as-spun fibers increased upon increasing PS concentration. The morphology of the fibers significantly depended on the properties of the solvents. The obtained fibers were smooth without any beads and their diameters were affected by the amount of THF in the solvent and PS concentration. The beads in the fibers disappeared and the fiber diameter significantly decreased after the addition of TBAB. The smallest diameter and the narrowest diameter distribution of PS nanofibers (376±36 nm) were obtained from 15% PS solution in DMAc with 0.025% w/v TBAB.  相似文献   

19.
Silk fibers and membranes were acylated with octadecenylsuccinic anhydride (ODSA) at 75°C for different times. Swelling [N,N‐dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)] and nonswelling (xylene) solvent media were used for the reaction. Silk membranes that reacted in DMF or DMSO displayed faster reaction kinetics and attained higher weight‐gain values than fibers. The effect of the solvent on the reaction yield was in the following order: DMSO > DMF ? xylene. The Fourier transform infrared spectra of acylated silk samples showed the characteristic absorption bands of the anhydride at 2990, 2852, 1780–1700, and 1170 cm?1. The intensity of the latter band, which increased linearly with the weight gain, was used as a marker for evaluating the reaction kinetics of the samples acylated in the nonswelling medium. The moisture regain and water retention of silk fibers acylated with ODSA decreased significantly, regardless of the solvent system used. Accordingly, the water repellency increased. Acylation induced an increase in the thermal stability of the silk fibers and membranes. Fine particles adhering to the surfaces of the silk fibers acylated in xylene were detected by scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 324–332, 2003  相似文献   

20.
The electric birefringence of poly(ε-carbobenzoxy-l-lysine) (PCBL) in various helicogenic organic solvents and solvent mixtures has been measured over a wide range of field strengths by application of rectangular pulses. The apparent permanent dipole moment and the optical anisotropy factor were separately determined from the field strength dependence of the steady-state birefringence. The apparent dipole moment per residue for a PCBL sample with molecular weight close to 1 × 105 fell in the range of 4.7 to 5.9 D in spite of the large variation of the solvent dielectric constant. The optical anisotropy factor was appreciably small and changed its sign depending upon the solvent. The intrinsic birefringence of PCBL was found to be negative in sign on the basis of the Peterlin-Stuart theory. This was interpreted in terms of the orientation of the side chains with respect to the helical backbone. The apparent dipole moment per residue for high molecular weight PCBL samples was much smaller, indicating a considerable flexibility of the helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号