首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Summary: In‐situ rheo small‐angle X‐ray scattering (SAXS), rheo‐light scattering, and rheo‐optical methods were employed to investigate the resultant morphology of polyhydroxybutyrate (PHB) under varying shear flow conditions. Immediately after shear flow application, a highly orientated structure emerged and row nucleation was identified at high shears. Only the initial stages of shish growth (we term the partial shish) were confirmed at excessively high shear conditions. However, only the kebabs were identified at medium shears, below this neither the shish nor kebab were observed. We believe this partial shish is a result of insufficient stability resulting from using such a low‐molecular‐weight species. We conclude that from our observations the shish kebab mechanism appears to display similarities to the Janeschitz‐Kriegl model of precursor formation.

Left: In‐situ rheo‐SAXS two‐dimensional pattern; kebab morphology observed at 100 s?1 for 1 s shear after 160 s. Right: In‐situ rheo‐optical micrograph; PHB row‐nucleated morphology observed at 100 s?1 for 1 s shear after 1 min.  相似文献   


2.
    
Two types of chitosan (CS), α and β, were blended with different concentrations of starch and cast to obtain films. The addition of 1% glycerol was used as a plasticizer to increase film flexibility. The properties of the obtained films were studied by positron annihilation lifetime spectroscopy, X‐ray diffraction, and scanning electron microscopy. The results indicate that pure β‐CS had smaller size free‐volume holes with high fractions than pure α‐CS; this was attributed to the difference in bonding of main chains in β‐CS. The addition of starch (>20% up to 50%) reduced the size of the free‐volume holes and increased their fraction because of the close packing of chain segments. The effect of 1% glycerol to the CS starch blends indicated that some modification took place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
    
A fibrous dispersed phase stuffed with polycaprolactone (PCL) was constructed in a poly(lactic acid) (PLA) matrix during an injection‐molding process. The injection‐molding process showed efficiency in forming dispersions with fibrous shapes, and they could impart the ductile property of PCL to the brittle PLA matrix, with appropriate interfacial adhesion arising from the cocrosslinking structure at the PLA/PCL interface by dicumyl peroxide (DCP). However, the addition of excess DCP caused a split of the dispersions resulting from the compatibility increment and the excess crosslinking reaction at the interface and inside each phase. The addition of a small amount of DCP could adhere the interface without splitting of the dispersions. The observed internal structure in the injection moldings showed a morphology transition that changed gradually from a fine fibrous morphology to a coarse morphology at a deeper position in the injection moldings. The tensile properties of sliced local layers, which were fabricated with a sliding microtome, proved that the fibrous morphology was effective in the improvement of ductility of the blends. An X‐ray analysis showed that the shear flow increased the crystalline orientation and formed a different crystalline structure only in the PCL dispersed phase, but its crystalline structure was not the main factor for ductility improvement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
    
Bio‐based poly(trimethylene terephthalate) (PTT) and poly(ether esteramide) (PEEA) blends were prepared by melt processing with varying weight ratios (0–20 wt %) of ionomers such as lithium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Li) and sodium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Na). The blends were characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light microscopy (PLM), and transmission electron microscopy (TEM). DSC and PLM results showed that EMAA‐Na increased the crystallization rate for PTT significantly, whereas EMAA‐Li did not enhance the crystallization rate at all. Specific interactions between PEEA and ionomers were confirmed by DSC and TEM. Electrostatic performance was also investigated for those PTT blends because PEEA is known as an ion‐conductive polymer. Here, we confirmed that both sodium and lithium ionomers work as a synergist to enhance the static decay performance of PTT/PEEA blends. Morphological study of these ternary blends systems was conducted by TEM. Dispersed ionomer domains were encapsulated by PEEA, which increases the interfacial surface area between PEEA and the PTT matrix. This encapsulation effect explains the unexpected synergy for the static dissipation performance on addition of ionomers to PTT/PEEA blends. This core–shell morphology can be predicted by calculating spreading coefficient for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
    
A method to blend starches and polyethylene, and thus improve the environmental footprint, was investigated. Unlike traditional methods that utilize compatibilizers or rely on reactive extrusion to achieve the desired material compatibility, a high amylose starch, such as Gelose 80, was mixed with native starch, converted to thermoplastic starch, and compounded with Ecoflex and polyethylene. Films showed good integrity and were evaluated for mechanical properties, anaerobic biodegradability, and structure changes both before and after anaerobic sludge digestion. Mechanical properties were sufficient that these films might be utilized in a number of applications but were not recommended as a sustainable solution. Biodegradation was below the theoretical maximum, was not a linear function of the amount of biodegradable materials incorporated in the films, and was depressed further as the proportion of polyethylene increased due to an encapsulation effect. Structural evaluation showed the components of the blends remained as separate phases and the structure of the Gelose 80 was reminiscent of interphase material. Biodegradation yield appeared to be principally driven by connectivity of the starches within the films to the anaerobic sludge digestion environment. Recommendations for additional studies were given. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
    
Light‐scattering materials were fabricated by the melt blending of polypropylene with an ethylene–vinyl acetate copolymer (EVA) to prevent the glare effect of light‐emitting diodes. The results show that the light‐scattering capacity was remarkably dependent on the phase morphologies of EVA. (1) When EVA was dispersed as spherical droplets, the transmittance and haze gradually increased with the enrichment of EVA, and the half‐peak width of the light‐scattering pattern reached a maximum when 30 wt % EVA was loaded. On the basis of the analysis of Mie scattering theory, the enlargement of scattering particles promoted light transmittance, and more incoming light was deflected at the arclike interfaces. This induced a distinct antiglare effect. (2) When scattering particles deformed and expanded vertically in the light‐transmitting direction, the light‐scattering capacity turned out to be weakened by further enrichment of the EVA phase. The planelike interfaces reduced the deflection of incoming light, and this led to decreases in the scattering angles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42844.  相似文献   

7.
    
Reactive interfacial compatibilization is the most efficient way to prepare super-tough poly (lactic acid) (PLA) materials. Introducing a post-reactive group into a toughening agent that can react with PLA is the key issue. Herein, we reported a series of fully bio-based polyesters (PBSePM) synthesized with sebacic acid, diethyl malate, 1,3-propanediol, and 1,4-butanediol via transesterification in one pot. Super-tough PLA materials can be obtained by reactively blending with PBSePM in the presence of hexamethylene diisocyanate (HDI). In the processing, the side hydroxyl group of the PBSePM reacted with HDI and formed polyurethane elastomer to improve the toughness of PLA. Moreover, the in-situ formed PLA-g-PBSePM grafted copolymer enhanced the interfacial adhesion. With increasing diethyl malate moiety in PBSePM, the PBSePM phase morphology transformed from co-continuous phase structure to semi-continuous and “sea-island” phase structure. When adding 20 wt% PBSePM, all PLA/PBSePM blends have a notched impact strength higher than 53 kJ m−2, suggested a super toughness effect. Maximum impact strength of 83 kJ m−2 was realized while the PBSePM containing 20% diethyl malate moiety. In addition, super-tough PLA materials can be achieved by only adding 15 wt% PBSePM20, exhibited a highly efficient toughening effect.  相似文献   

8.
    
A small amount of acrylonitrile‐butadiene‐styrene (ABS) core shell copolymer particles are used to improve the toughness of poly(l ‐lactide) (PLLA) matrix. The incorporation of ABS copolymer dramatically increased the elongation yield at break of PLLA. For PLLA blend with 6.0 wt % ABS copolymer particles, the elongation yield at break increased by 28 times and the notched impact strength improved by 100% comparing with those of neat PLLA. Fourier transformed infrared (FTIR) and dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) measurement results indicated that the special polarity interaction between ester group of PLLA matrix and nitrile group of PSAN shell phase enhanced the interfacial adhesion between PB rubber phase and PLLA matrix and promoted the fine dispersion of ABS particles in PLLA matrix. Meanwhile, ABS core shell particles also showed a certain extent of effects on the crystallinity behavior of PLLA. A small amount of ABS particles became the nucleating sites, and then the degree of crystallinity of PLLA/ABS blends increased. However, the notched impact of PLLA blends decreased because of the aggregation of more ABS particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42554.  相似文献   

9.
    
Technical renewable poly(l ‐lactide) (PLA)‐based blends represent an elegant way to achieve attractive properties for engineering applications. Recently, the miscibility between PLA and poly(methyl methacrylate) (PMMA) gave rise to new formulations with enhanced thermo‐mechanical properties but their high brittleness still remains a challenge to be overcome. This work here focuses on rubber‐toughened PLA/PMMA formulations for injection‐molding processes upon the addition of a commercially available ethylene‐acrylate impact modifier (BS). The miscibility between PLA and PMMA is not altered by the presence of BS but the incorporation of BS (17% by weight) into a PLA/PMMA matrix could enhance both ductility and toughness of PLA/PMMA blends for PMMA content up to 50 wt %. An optimum range of particle sizes (dn ~0.5 µm) of the dispersed domains for high impact toughness is identified. These bio‐based ternary blends appear as promising alternatives to petro‐sourced blends such as ABS‐based blends in engineering injection‐molding parts. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43402.  相似文献   

10.
11.
    
A batch processing method is used to fabricate foams comprising of a blend of poly(lactic acid) (PLA) and Novatein, a protein‐based thermoplastic. Various compositions of Novatein/PLA are prepared with and without a compatibilizer, PLA grafted with itaconic anhydride (PLA‐g‐IA). Pure Novatein cannot form a cellular structure at a foaming temperature of 80 °C, however, in a blend with 50 wt % of PLA, microcells form with smaller cell sizes (3.36 µm) and higher cell density (8.44 × 1021 cells cm?3) compared to pure PLA and blends with higher amounts of PLA. The incorporation of 50 wt % of semicrystalline Novatein stiffens the amorphous PLA phase, which restrains cell coalescence and cell collapse in the blends. At a foaming temperature of 140 °C, NTP30–PLA70 shows a unique interconnected porous morphology which can be attributed to the CO2‐induced plasticization effect. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45561.  相似文献   

12.
    
This study reports investigation of the sustained release behavior of a model drug (acetylsalicylic acid) from carboxymethylstarch (CMS) based matrix. CMS was prepared by incorporation of carboxymethyl groups in the starch moiety; by reacting starch with sodium salt of monochloro acetic acid in presence of sodium hydroxide. The in vitro drug release study was performed by United States Pharmacopeia rotating paddle method, at various pH. The rate of drug release from the above matrix was found to increase with increase in pH. Further, the release behavior of the drug from the CMS based matrix was found to be non‐Fickian, n value being between 0.80 and 0.85, suggesting that the release was controlled by a combination of tablet erosion and diffusion of the drug from the swollen matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Two maize flours (standard and waxy grades) were plasticized in an internal mixer with a constant amount of water and two glycerol contents. The resulting thermoplastic flours (TPFs) were characterized in dynamic oscillatory shear and creep/recovery rheometry. They displayed two different behaviors: the viscoelastic behavior of a high‐molecular‐weight polymer for the first one and a gel‐like behavior for the second one. The TPFs were then mixed with a copolyester [poly(butylene adipate–terephtalate)]. All of the blends contained the same volume fractions and were prepared with the same mixing conditions. The morphology and rheological behavior of each blend were characterized. Different morphologies, ranging from cocontinuous to nodular, were observed. In fixed mixing conditions, the blend morphology was shown to be governed by the rheological behavior of the starchy phase and the plasticizer content. The gel‐like behavior of the second TPF seemed to prevent droplet coalescence; this led to a very fine dispersion. The rheological behavior of each blend appeared to be linked to both the morphology and the rheological behavior of the two phases. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40222.  相似文献   

14.
    
Traditionally, the morphologies of the dispersed phase in Polycarbonate (PC)/poly(styrene‐co‐acrylonitrile) (SAN) blends were strongly influenced if AN content in SAN changed significantly even under constant processing conditions. This would hinder the pure research intended to study the effect of the refractive index difference between the polymer host and the polymeric dispersed particles on the optical properties tough. Therefore, we respectively prepared different PC/SAN light diffusion sheets with four types of SAN containing different AN content ranging just from 20 to 25 wt %, a narrow range that sufficiently ensures the relatively stable morphology of different SAN in PC matrix. The results suggest that the refractive index of SAN increases with an decreasing AN content, thus narrowing the refractive index difference between PC and SAN and producing PC/SAN(70/30) light diffusion sheets with an increasing transmittance and decreasing haze. The interesting phenomenon is further analyzed using Mie scattering theory. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44156.  相似文献   

15.
    
Our study was focused on the presupposition that morphology control in immiscible polymer blend could give rise to reinforcement in composites. To investigate the effects of shear and elongational flow in polymer processing, observation of the mechanical properties and the morphology of the polypropylene/polycaprolactone (PP/PCL) blend system was performed. PP/PCL sheets were fabricated by means of a single‐screw extruder equipped with a slit‐type die to which high shear and elongational stresses were applied. For the sake of comparison, a second series of composites of identical composition was compression molded with a hot‐press machine that transmits lower shear and elongational stresses. The results indicate that the extruded sheets have better mechanical properties than those of the compression‐molded sheets, a result attributed to the generation of in situ dispersed long fiber minor phases and cocontinuous phases in the extruded composites. The differences in the crystallization behavior of the fibrous and spherically shaped components were indicated clearly by DSC curves. A PP crystalline peak indicative of in situ PP fiber formation is conspicuous around 980 cm−1 (PP crystalline band) in the FTIR spectrum. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 833–840, 2004  相似文献   

16.
    
The crystallization kinetics and spherulitic morphology of six‐armed poly(L‐lactic acid) (6a‐PLLA)/poly(3‐hydroxybutyrate‐co?3‐hydroxyvalerate) (PHBV) crystalline/crystalline partially miscible blends were investigated with differential scanning calorimetry and polarized optical microscopy in this study. Avrami analysis was used to describe the isothermal crystallization process of the neat polymers and their blends. The results suggest that blending had a complex influence on the crystallization rate of the two components during the isothermal crystallization process. Also, the crystallization mechanism of these blends was different from that of the neat polymers. The melting behavior of these blends was also studied after crystallization at various crystallization temperatures. The crystallization of PHBV at 125°C was difficult, so no melting peaks were found. However, it was interesting to find a weak melting peak, which arose from the PHBV component for the 20/80 6a‐PLLA/PHBV blend after crystallization at 125°C, and it is discussed in detail. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42548.  相似文献   

17.
    
This work studies the effect of processing parameters on mechanical properties and material distribution of co‐injected polymer blends within a complex mold shape. A partially bio‐sourced blend of poly(butylene terephthalate) and poly(trimethylene terephthalate) PTT/PBT was used for the core, with a tough biodegradable blend of poly (butylene succinate) and poly (butylene adipate‐co‐terephthalate) PBS/PBAT for the skin. A ½ factorial design of experiments is used to identify significant processing parameters from skin and core melt temperatures, injection speed and pressure, and mold temperature. Interactions between the processing effects are considered, and the resulting statistical data produced accurate linear models indicating that the co‐injection of the two blends can be controlled. Impact strength of the normally brittle PTT/PBT blend is shown to increase significantly with co‐injection and variations in core to skin volume ratios to have a determining role in the overall impact strength. Scanning electron microscope images were taken of co‐injected tensile samples with the PBS/PBAT skin dissolved displaying variations of mechanical interlocking occurring between the two blends. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41278.  相似文献   

18.
    
Because of the importance of the maltene–polymer interaction for the better performance of polymer‐modified asphalts, this article reports the effects of the molecular characteristics of two commercial poly(styrene‐block‐butadiene‐block‐styrene‐block) (SBS) polymers and their partially hydrogenated derivatives [poly{styrene‐block[(butadiene)1?x–(ethylene‐co‐butylene)x]‐block‐styrene‐block} (SBEBS)] on the morphology and rheological behavior of maltene–polymer blends (MPBs) with polymer concentrations of 3 and 10% (w/w). Each SBEBS and its parent SBS had the same molecular weight and polystyrene block size, but they differed from each other in the composition of the elastomeric block, which exhibited the semicrystalline characteristics of SBEBS. Maltenes were obtained from Ac‐20 asphalt (Pemex, Salamanca, Mexico), and the blends were prepared by a hot‐mixing procedure. Fluorescence microscopy images indicated that all the blends were heterogeneous, with polymer‐rich and maltene‐rich phases. The rheological behavior of the blends was determined from oscillatory shear flow data. An analysis of the storage modulus, loss modulus, complex modulus, and phase angle as a function of the oscillatory frequency at various temperatures allowed us to conclude that the maltenes behaved as pseudohomogeneous viscoelastic materials that could dissipate stress without presenting structural changes; moreover, all the MPBs were more viscoelastic than the neat maltenes, and this depended on both the characteristics and amount of the polymer. The MPBs prepared with SBEBS were more viscoelastic and possessed higher elasticity than those prepared with SBS. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
    
Compatible and partly-biobased poly(l -lactide) (PLA)/polyamide-12 (PA12) blends (30 wt% PA12) are here processed by twin-screw extrusion at high shear without added compatibilizers and the effect of several processing parameters (screw speed, feed rate) on final properties (tensile strength, ductility, impact toughness, thermal resistance) is addressed. High tensile strengths could be maintained for these blends with a maximal ductility (225%) and impact toughness (48 kJ/m2) achieved for an optimal screw speed of 800 rpm. However, extreme screw speeds higher than 800 rpm dramatically reduce ductility and impact toughness. Concerning thermal resistance, a constant increase of the heat deflection temperature is observed with the screw speed and thermal resistance up to 123°C could be obtained. In this respect, processing conditions of PLA/PA12 blends have profound positive effects on all (thermo)mechanical properties. Blend morphologies were revealed by scanning electron microscopy and refined PA12 fibrils are detected at optimal processing conditions. Properties deterioration were correlated to a PA12 fibrillar-to-ellipsoidal shape transition at extreme screw speeds arising from PLA degradation and attesting for the importance of the PA12 fibrillation process on final properties. Consequently, PLA/PA12 blends represent interesting biobased candidates for high-performance applications and their optimization could be easily performed by playing with extrusion conditions without compatibilizers.  相似文献   

20.
    
Organically modified layered silicates with a hydroxyl‐substituted quaternary ammonium surfactant as the modifier were incorporated into a mixture of poly (ether imide) and epoxy with 4,4′‐diaminodiphenyl sulfone as the hardener. The influence of the organically modified layered silicates on the reaction‐induced phase‐separation kinetics and morphology of the poly(ether imide)/epoxy mixture was investigated with time‐resolved small‐angle light scattering, phase‐contrast microscopy, and scanning electron microscopy. The phase‐separation kinetics were analyzed by means of the temporal evolution of scattering vector q m and scattering intensity Im at the scattering peak. The organically modified layered silicates obviously facilitated an earlier onset of phase separation but reduce the phase‐separation rate and greatly retarded the domain‐coarsening process in the late stage of spinodal decomposition. The temporal evolution of both q m and Im followed the power law q m ~ (t ? tos) and Im ~(t ? tos), where t is the reaction time, tos is the onset time of phase separation, and α and β are growth exponents. For the samples filled with organically modified layered silicates, α crossed over from 0 to about 1/3, following Binder–Stauffer cluster dynamics, and an interconnected phase structure was observed for cure temperatures ranging from 120 to 230°C. For the unfilled samples, the interconnected phase structure was observed only at cure temperatures below 140°C. At temperatures above 150°C, α crossed over from 0 to 1/3 < α ≤ 1 under the interfacial tension effect, following Siggia's theory, and the domain‐coarsening rate was very fast; this resulted in macroscopic epoxy‐rich domains. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1205–1214, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号