首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To produce steel components with complex shapes excessive machining is necessary frequently since high pressure die casting of steel is not industrially applied. Forming steel in the semi‐solid state can in principle produce new components and geometries which cannot be realised by conventional closed die forging. Semi‐solid forging of steel combines the possibility of producing geometries not conventionally forgeable in one forming operation and of adding further functions during the same operation. In previous investigations on thixoforming of steels, the semi‐solid steel was generated by reheating precursor material billets. An alternative approach for generating semi‐solid steel from the liquid state with subsequent forging operation is presented in this paper for the first time. The steel grades X210CrW12 cold work tool steel and 100Cr6 bearing steel are molten and driven into a globular semi‐solid state using a cooling slope and a cup. By cooling the steel into the semi‐solid range instead of heating it, the required process temperatures are lower than in the process route via heating. Therefore, the load on the dies in a semi‐solid forging operation is decreased. Suggestions for the respective layout of the process are made for both steel grades. Future potentials and challenges to be solved are discussed, showing advantages especially in the field of high melting point alloys such as steels. This technique enables to produce pre‐shaped semi‐solid billets to optimise the materials flow and the homogeneity of the mechanical properties.  相似文献   

2.
La2Ce2O7(LC) 由于具有比 YSZ 更低的热导率、 更高的热膨胀系数和良好的高温相稳定性, 是一种极具前 景的热障涂层陶瓷材料。 但该材料热膨胀系数在 200~400℃温度区间存在异常下降现象, 从而引起涂层过早失效 的问题。 目前, 通过掺杂 Gd2O3 可有效解决 LC 低温段热膨胀系数下降的问题, 但是, Gd2O3 改性 La2Ce2O7 热障 涂层最优掺杂浓度及涂层性能还未见报道。 本文采用化学共沉淀法制备了三种不同浓度 Gd2O3 改性 La2Ce2O7 材 料 ((LaxGd1-x)2Ce2O7(x=0,0.1,0.2,0.3)), 研究了掺杂浓度对其热物理性能及相稳定性的影响, 采用等离子喷涂工艺 制备了(La0.8Gd0.2)2Ce2O7 (LGC)涂层, 研究了涂层的抗热震性能和涂层的失效机理。 研究结果表明: (La0.8Gd0.2)2Ce2O7 (LGC) 材料具有较低的热导率, 室温到 1400℃无相变, 并且经 1400℃长时间热处理无相变; 其制备的双陶瓷结 构 LGC/YSZ 热障涂层 1100℃热震次数可达到 109 次, 较未改性 LC/YSZ 热障涂层提升了大约 60%; 两种涂层的 失效模式相似, 均为陶瓷顶层烧结引起的片状剥落失效。  相似文献   

3.
Effect of Rare Earth on Thermal Shock Resistance of Steel 9Cr2Mo   总被引:5,自引:0,他引:5  
Rareearthelementshavebeenaddedintohotrollersteel.REelementscanimprovether malfatigue[1] ,lowfrequencyfatigue[2 ] ,plas ticityandtoughness[3] ,refineausteniticgrainsize[4] andmodifyinclusions[5 ] ofhotrollersteel 6 0CrMnMo .Steel 9Cr2Moisatraditionalcoldrollersteel.When…  相似文献   

4.
Microstructural evolutions of type 304 stainless steel and the related mechanical property of flow stress in semi‐solid state are investigated. The evolutions of microstructure during solidification, partial remelting of a hot‐rolled billet and partial remelting of a cast billet are compared with respect to structural morphologies in the semi‐solid state. Various structural morphologies, such as the linear and multilayered liquid/austenite/δ‐ferrite structure, globular liquid/δ‐ferrite structure and dendrite structure, are characterized using optical micrographs and an EPMA (electron probe microanalyzer). The various structural morphologies in the semi‐solid state are influenced not only by the phase transformation but also by the previous treatment of type 304 steel, such as hot rolling and casting. Furthermore, a series of hot compression tests are conducted for various combinations of deformation rate and deformation temperature in the semi‐solid state, to measure the flow stress and the change in microstructure resulting from plastic deformation. Flow stress, phase segregation, microfracture and distortion of solid particles during and after the hot compression test are strongly affected by the structural morphology in the semi‐solid state, such as the dendrite structure, nonglobular structure and globular structure. Semi‐solid type 304 stainless steel with dendrite structure exhibits the highest flow stress, which is about three times that of steel with globular structure, although the testing temperature and deformation rate are controlled to be the same. This is a result of the higher bonding force between solid particles and lower fluidity of the liquid phase of the dendrite structure than those of the globular structure, which exhibits excellent fluidity of the liquid phase and rotation of solid particles.  相似文献   

5.
In this work the suitability of alloys for semi‐solid processing was investigated using numeric simulation. The simulation was based on equilibrium calculations, Scheil‐Gulliver calculations and, when necessary, diffusion simulations. For this purpose a new parameter was introduced in addition to the commonly used selection criteria. With the new parameter, the thixo ranges ΔT40–60 and ΔT20–40, the specific demands of the different semi‐solid processes thixocasting and thixoforging can be considered. On the basis of thermodynamic simulation, the conventional aluminium alloys A356, AA6082 and A319, the steels 100Cr6, HS6‐5‐2 and X210CrW12 and a number of experimental aluminium‐lithium based alloys were evaluated according to the selection criteria. The thermodynamic calculations showed a large sensitivity of the course of the solidification with respect to variations in the contents of the alloying elements. This shows the necessity of keeping a tight composition control on alloys for semi‐solid processing. For aluminium alloys in particular silicon has to be monitored closely and for steels carbon and chromium.  相似文献   

6.
Effects of Y2O3 on Thermal Shock of Al2O3/TiCN Composites   总被引:3,自引:0,他引:3  
Advancedstructuralceramics ,suchasoxides ,nitridesandcarbides ,havebecomepreferredrefracto rymaterialsforaviation ,spaceflight ,energyandmet allurgybecauseoftheirchemicalstability ,creepresis tanceandhightemperaturestrength .Buttheyareaf fectedgreatlybyte…  相似文献   

7.
Forging is state‐of‐the‐art for producing hand tools on an industrial scale. Due to high demands on the stiffness and the fracture toughness, high‐strength forging steels are used to provide cavity‐free components with high mechanical load capacity. Moreover, forging is a cost‐effective mass production process but, in spite of all its advantages, it has its limitations, e.g. in the freedom of designs. However, because of the extreme thermal loading (particularly with regard to permanent moulds) and the frequently unavoidable casting defects, hand tools are not cast. By means of thixocasting steel, technical difficulties can be reduced and new options are provided which allow the manufacturing of components with much higher complexity than that using forging. Through near‐net shape production, manufacturing steps and costs can be reduced. Furthermore, steels, which are difficult to forge but nonetheless have high potential for specific applications (such as high strength or corrosion resistant steels), can also be processed. In cooperation with industrial partners, X39CrMo17 stainless steel size 17 combination spanners were thixocast. Forming dies were designed and optimized by simulation, the hot forming X38CrMoV5 tool steel as well as the molybdenum alloy TZM were selected as the tool alloys. The dies were treated by a plasma nitriding process and subsequently coated with crystalline Al2O3 protective coatings by plasma‐enhanced chemical vapor deposition (PECVD). During the experiments, combination spanners were successfully cast in the semi‐solid state. Cast parts were heat‐treated to enhance the components' toughness, which was subsequently measured by Charpy impact and tensile tests.  相似文献   

8.
Based on the solidification theory for metal alloys, a simple recipe for the controlled processing of globular microstructures without external stirring is presented: Firstly, small solidification nuclei must be distributed homogeneously throughout a melt. In New Rheocasting (NRC) these nuclei are formed by forced homogeneous nucleation due to partial quenching of the melt, while in Super Rheocasting (SRC) the nuclei are “second phase particles” in specially designed alloys, which are grown in a controlled fashion in a certain temperature range. Potential alloy compositions for SRC are provided. Secondly, given these melts with small particles in them, globular growth can be assured by utilizing the Gibbs‐Thomson “self healing effect” and slow further cooling to allow diffusion in the melt and to suppress constitutional supercooling. This simple recipe is applicable to various ferrous and non‐ferrous alloys. If an SRC alloy is cooled more rapidly than necessary for globular growth of the primary phase, but is held sufficiently long in the SRC range for dispersoid formation, these dispersoids can act as potent grain refiners and possibly enhance elevated temperature properties. A combination of both processes by using SRC alloys in the NRC equipment may lead to pressure tight castings with low porosity and finer grain structure than can be achieved with NRC on its own, and consequently, better mechanical properties.  相似文献   

9.
One important parameter for the processing of materials by semi‐solid forming is the actual distribution of the solid and liquid phases in the semi‐solid range. This parameter defines the process stability for the forming step. Therefore it is necessary to obtain information about the materials behaviour in the semi‐solid state for different materials grades. This kind of information can be obtained by experimental studies in the interesting temperature range or by calculations with simulation programs using thermodynamic data validated by experiments. This work shows the results of experimental studies and thermodynamic calculations of the solidification and heat treatment behaviour of the aluminium alloy A319 and the steel X210CrW12. The experimental studies of solidification and heat treatment of these alloys were carried out using a differential thermal analysis system (DTA). The theoretical fraction of liquid content was calculated from the DTA signal by using a software module called Corrdsc. The experimental data obtained were used to validate the thermodynamic simulations of the solidification of semi‐solid alloys. The simulations of the solidification process were carried out for equilibrium conditions, with the Scheil‐Gulliver model as well as with diffusion calculations. The equilibrium and Scheil‐Gulliver calculations were performed by the program Thermo‐Calc, and the diffusion by the program DICTRA. The required thermodynamic and mobility data for multicomponent systems were taken from the data bases COST 507 light alloys, TCFE2000 Steel/Alloys and MOB2 mobility and from newly added data. The comparison of calculated phase transformations and fractions of liquid content with experimental data revealed a good agreement.  相似文献   

10.
11.
The Al2O3‐CaO‐CaF2 slag system is used in making special quality steels by the electro‐slag re‐melting process (ESR). The purpose of our investigation was to analyse ESR slag that contained SiO2. The slag samples with different SiO2 fractions (0 ‐ 20 mass %) were examined by chemical analysis, differential thermal analysis, simultaneous thermal analysis, X‐ray diffraction, electron microscopy and wetting angle measurement. With addition of SiO2 the polymerization of slags was increased due to the formation of new silicate complex compounds that influenced their melting points and wetting angles.  相似文献   

12.
Open porous cellular iron exhibits low oxidation resistance which is limiting their use for application at room and elevated temperatures. Here we deposit α‐Al2O3 by Chemical Vapor Infiltration (CVI) to enhance oxidation resistance. The oxidation resistance before and after CVI is investigated by thermo gravimetrical analysis (TGA). The reaction products, surface morphologies and cross sections are investigated by X‐ray diffraction, chemical analysis and electron microscopy. α‐Al2O3 infiltrated cellular iron samples exhibit up to 6 orders of magnitude lower oxidation rate at an oxidation temperature of 600 °C, compared to the unprotected cellular iron. In addition, the infiltrated sample shows good resistance during thermal cycling up to this temperature.  相似文献   

13.
14.
The effect of oxide component content on the low melting point zone (simplified as LMP) in the CaO‐MnO‐Al2O3‐SiO2 system has been analysed by FactSage. The contents of [Si], [Mn], [O] and [Al] in liquid steel which are in equilibrium with the LMP inclusions in the CaO‐MnO‐Al2O3‐SiO2 system have been calculated. The results show that the CaO‐MnO‐Al2O3‐SiO2 system has the largest LMP zone (below 1400°C) when the Al2O3 content is 20% or the CaO content is 15%, and that the LMP zone becomes wider with increase in SiO2 and MnO contents (within the range of 0~25%). To obtain LMP inclusions (below 1400°C), [Si] and [Mn] can be controlled within a wide range, but [Al] and [O] must be controlled within the range of 0.5~5 ppm and 50~120 ppm, respectively.  相似文献   

15.
16.
In Japanese steelworks, hot metal is now produced by scrap melting process. With this process removal of sulphur is very much handicapped because of very high sulphur levels (0.04 to 0.09 pct by weight) and relatively low tapping temperatures (1623 to 1723 K). In order to overcome such disadvantages, the authors explored on the phase diagrams of {CaO‐SiO2‐Al2O3‐MgO} slags, and this research revealed that those slags at 35 wt%‐Al2O3 would be good candidates as reagents for the removal of sulphur from high sulphur hot metal at relatively low temperatures. For better understanding of the thermodynamic properties of the candidate slags, in this study, activities of FexO were determined by using solid‐state electrochemical cells incorporating MgO‐stabilized zirconia and Mo + MoO2 reference electrode.  相似文献   

17.
The process of hot forging with permanent moulds is a challenge in respect to the very high thermal, mechanical and tribological loads on tools. Ensuring sufficient lifetime application of protective films can be beneficial. Initial screening experiments using PVD coated compression plates show that one of the metastable phases of alumina, the γ‐phase, exhibits high strength and toughness and fulfils the requirements for a protective coating. The next important step in the development towards an industrial application is the implementation on complex tool shapes and verification in real forming experiments. After coating deposition using an industrial coating unit, coated dies were tested in forming experiments under industrial conditions. The forming experiments show an improvement of the wear resistance after 1000 forming cycles for the coated dies compared to the uncoated dies.  相似文献   

18.
The effect of oxide component content on the low melting point zone (LMP) in the CaO‐MgO‐Al2O3‐SiO2 system has been analysed using FactSage software. The contents of dissolved elements [Si], [Mg], [O] and [Al] in liquid steel in equilibrium with the LMP inclusions in the CaO‐MgO‐Al2O3‐SiO2 system have been calculated. The results show that the CaO‐MgO‐Al2O3‐SiO2 system has the largest LMP zone (below 1400°C) when the Al2O3 content is 20% or the MgO content is 10%. The LMP zone becomes wide with the increase in CaO content (within the range of 0~30 mass%) and the decrease in SiO2 (from 25 to 5 mass%). To obtain the LMP (below 1400°C) inclusions, the [Mg], [Al] and [O] contents must be controlled within the range of 0.2~2 ppm, 1.0~2.0 ppm and 60~100 ppm, respectively.  相似文献   

19.
Reactions at the refractory/melt interface during ingot casting of Ni‐ and Ni‐Fe‐alloys were studied. The casts were performed using different alumino‐silicate bricks as refractory materials. Samples taken from the casting channel before and after casting were investigated using light and scanning electron microscopy with XPS. Thermodynamic calculations were performed with FactSage and the results were compared with the results from industrial tests. After the melt has infiltrated the surface layer of the bricks, refractory corrosion starts with an attack of Mn and Mg of the melt on SiO2 and Fe2O3 of the refractory bonding matrix. Despite the presence of elements with higher oxygen affinity in the melt, low‐melting alumino‐silicate phases are predominantly built by the reaction with Mn and Mg. In a second step this liquid phase either traps non‐metallic inclusions from the melt or, at higher contents of Zr, Ti, Mg, Y etc. in the melt, causes massive reoxidation and inclusion formation. The refractory materials investigated show an increasing trend for reoxidation with an increasing amount of SiO2 in glassy phases of the refractory bonding matrix. By the use of a refractory material with higher mullite content in the bonding matrix or by use of alumina bricks a strong reoxidation of the melt and intense inclusion formation can be avoided. These observations are also valid for other alloys with higher contents of elements with high affinity to oxygen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号