首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   

2.
The structural response of welded aluminium in fire is computationally and experimentally analysed. A finite element (FE) model is developed to compute the deformation and failure of gas metal arc welded (GMAW) aluminium plate under combined loading and one‐sided unsteady‐state heating representative of fire. The FE model predicts the deformation of the weld, heat‐affected zone and parent plate based on the combined effects of elastic softening, plastic softening and creep. The effects of residual stresses in the weld and thermal expansion on the deformation response are also analysed. The numerical accuracy of the model is rigorously evaluated using a large amount of deformation and failure stress data obtained from fire structural tests performed with welded AA5083–AA5083, AA5083–AA6061 and AA6061–AA6061 plates. Good agreement is found between results computed with the FE model and experimental testing. The results reveal that GMAW welds do not reduce the structural performance of aluminium in fire unless the maximum temperature remains below the recrystallisation temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of fiber volume fraction and transcrystallinity in single fiber composites, on the phenomenon of compressive fiber fragmentation due to residual thermal stresses, are studied. A concentric cylinder model is used, jointly with experimental data, to predict the Weibull shape parameter of the compressive strength distribution of pitch-based high and medium modulus (HM and MM) carbon fibers, with isotactic polypropylene as the semi-crystalline embedding matrix. A severe effect of the fiber content on the thermal residual stress in the fiber and, thus, on the fiber break density, is predicted and experimentally confirmed. The effect of the presence of isothermally grown polypropylene transcrystalline interlayers (using pitch-based HM carbon fibers as a substrate) on the compressive stresses induced upon subsequent quenching is investigated, both experimentally and theoretically. Cooling rate results are also presented. The thermoelastic constants of the interlayer are predicted to have a severe effect on the residual stresses generated in the fiber, the interphase, and the matrix. There is therefore, a definite need for direct experimental measurements of these constants.  相似文献   

4.
Complex automotive parts were produced by film insert molding and the ejected parts were annealed to investigate the viscoelastic deformation. Warpage of the part was predicted by numerical simulation of mold filling, packing, and cooling stages with non‐isothermal three‐dimensional flow analysis. The flow analysis results were transported to a finite element stress analysis program and the stress analysis was performed by using time‐temperature superposition principle to investigate viscoelastic deformation. Predicted residual stresses, viscoelastic deformation, and warpage showed good agreement with experimental results. Thermal shrinkage of the inserted film and relaxation of the residual stress affected the viscoelastic deformation of the part significantly during annealing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The aim of the present work was the determination of the fracture mechanisms in glass–alumina functionally graded materials (FGMs). The investigation was performed by means of a combined approach based on microscale computational simulations, which provided for an accurate modelling of the actual FGM microstructure, and experimental analysis. The numerical results proved that microstructural defects, such as pores, deeply influenced the damage evolution. On the contrary, the minimization of the mismatch in the coefficients of thermal expansion of the ingredient materials allowed to obtain low thermal residual stresses, which did not relevantly affect the crack propagation. In order to support the numerical model, microindentation tests were performed on the cross-section of FGM specimens and the experimentally observed crack paths were compared to the computationally predicted ones.  相似文献   

6.
Residual stresses and thermoviscoelastic deformation of a laminated film utilized for film insert molding was investigated through measurement of thermal expansion coefficient (CTE) and relaxation modulus. Thermoviscoelastic deformation of the film was also analyzed with numerical analysis by applying measured relaxation modulus, CTE, and residual stress to finite element method (FEM). Stress relaxation of the pristine film showed significantly different behavior from that of the unannealed film during annealing. Effects of the CTE and relaxation modulus on the thermoviscoelastic deformation were predicted by considering thermal shrinkage and structural relaxation. Moreover, numerical results on thermoviscoelastic deformation were in good agreement with experiments when initial stress distribution in the solid specimen was applied to the numerical analysis. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
The present study attempted to numerically predict both the flow‐induced and thermally‐induced residual stresses and birefringence in injection or injection/compression molded center‐gated disks. A numerical analysis system has been developed to simulate the entire process based on a physical modeling including a nonlinear viscoelastic fluid model, stress‐optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling and typical numerical analysis results of residual stresses and birefringence in the injection molded center‐gated disk. Typical distribution of thermal residual stresses indicates a tensile stress in the core and a compressive stress near the surface. However, depending on the processing condition and material properties, the residual stress sometimes becomes tensile on the surface, especially when fast cooling takes place near the mold surface, preventing the shrinkage from occurring. The birefringence distribution shows a double‐hump profile across the thickness with nonzero value at the center: the nonzero birefringence is found to be thermally induced, the outer peak due to the shear flow and subsequent stress relaxation during the filling stage and the inner peak due to the additional shear flow and stress relaxation during the packing stage. The combination of the flow‐induced and thermally‐induced birefringence makes the shape of predicted birefringence distribution quite similar to the experimental one.  相似文献   

8.
Non-isothermal cooling during processing causes the development of residual stresses, which are analyzed for compression molded UHMWPE, and affects the dimensional stability. The development of thermal residual stresses was predicted using an incremental stress analysis that included temperature-dependent material properties. Strain gauges were used to measure the residual stresses as layers were removed from a molded disk using a Process Simulated Laminate (PSL) approach. The PSL technique has not previously been applied to a compression molded neat polymer. For initial surface cooling rates of ~ 11°C/min, the model predicted a compressive stress at the bottom surface of 14 MPa and a tensile stress near the center of 2.5 MPa and matched the experimental distribution well. Because the compressive residual stress was 70% of the yield strength (~20 MPa), a lower cooling rate was also tested (2.6°C/min). The maximum tensile and compressive stresses for this cooling rate were, 0.91 MPa and 2.5 MPa, respectively. The model demonstrated its use for predicting thermal residual stresses in compression molded parts, instead of trial-and-error experimentation. UHMWPE is shown to develop residual stresses continually from ~ 120°C to 23°C.  相似文献   

9.
An analysis of the crystallization kinetics of polytetrafluoroethylene (PTFE) under nonisothermal conditions is presented. A simple method is proposed to remove the limits of the Ozawa theory. The Avramic exponent, n, can be reasonably well determined from the nonisothermal crystallization exotherm. An n value of ~1.49 was obtained for PTFE, which indicates the formation of one‐dimensional crystallites (fibrillar type) after thermal nucleation or two‐dimensional crystallites (discs) after athermal nucleation. Both these morphologies were experimentally observed. For PTFE crystallization from the melt, activation energy was obtained as 34 kcal/mol. This is much smaller than those of PEEK and PET, indicating a very fast crystallization of PTFE.  相似文献   

10.
Residual stresses, bending moments, and warpage of film insert molded (FIM) parts were investigated by experimental and numerical analyses. Thermally induced residual stresses in FIM parts were predicted by numerical simulations with both commercial and house codes. Bending moments and warpage of FIM tensile specimens were calculated numerically and compared with experimental results. Thermally induced residual stresses were predicted by utilizing a one‐dimensional thermoelastic model where constant material properties are assumed. The residual stress distribution depended remarkably on the Biot number and the heat was removed rapidly through the surface resulting in high residual stresses. Asymmetric residual stresses generated by nonuniform cooling of the part provoked nonuniform shrinkage and warpage of the molded tensile specimen. It was found that the numerically calculated bending moment is in good agreement with the experimental results. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

11.
This paper studies the effects of the residual stresses which originate in the laminates made of composite materials owing to the curing process, and on stresses affected by time and temperature. In order to sustain high operating temperatures, the polymer composites' laminates are made of high performance matrices that usually require processing cycles at high temperatures. The strong thermal variation due to the subsequent cooling process induces residual stresses, owing to the thermoelastic orthotropy of the material. For non-symmetrical stacking sequences, these stresses notably modify the shape of the laminate and reduce both its static strength and buckling load, as a consequence of the latent content of elastic energy stored by the pre-loading. The polymeric composites show a viscoelastic behavior, which implies a constitutive law dependent on both time and temperature. For this reason, the analysis of the phenomenon should account for the creep and the relaxation mechanisms. The configuration of asymmetric laminate is evaluated by both analytical and numerical finite element (FEM) methods. The actual shape of laminates of different geometries is also experimentally determined. On the basis of the analysis of the shape of laminates measured after different thermal cycles, the evolution of residual stresses with time and temperature is analyzed.  相似文献   

12.
An analysis is performed to predict the densification during and the state of residual stress after hot pressing of annular alumina/zirconia (3Y-TZP) composites. The objective of the analysis was to study the residual stresses resulting from stress gradients during pressing and those from thermal expansion mismatch during the cooling of the compact from the pressing temperature to room temperature. It is predicted that the residual stresses are affected by the respective densification rates of the core and the annulus, their elastic modulus, and thermal expansion coefficient. For the system analyzed in this study, it is predicted that hot pressing reduces the residual stresses that result from the mismatch in thermal expansion coefficients. This is due in part to the high densification rate and in part to the high elastic modulus of the alumina annulus compared to the zirconia core. For surface compression strengthening, a system where the annulus would have similar elastic modulus but lower densification rate and lower thermal expansion coefficient than the core would be more beneficial.  相似文献   

13.
Injection molding is the most widely used technology for precision forming of thermoplastic products. However, high temperature and pressure gradients during solidification can be locked in as residual stresses, resulting in distortion of the product after ejection. Increasing demand for tight dimensional tolerances makes it increasingly important to predict such distortion. In this article, thermal‐induced residual stresses generated during the filling, packing, and cooling stages of injection molding are estimated by implementing the residual temperature field concept to describe the relationship between the thermal history and the frozen‐in strains. Although they are an order of magnitude lower than thermal stresses, it is shown that the approach can be extended to account for pressure‐induced residual stresses, taking advantage of the orthogonal lines already used as integration paths for the residual temperature field. A crystallization model is coupled to the thermal analysis as a heat source to account for its effect on the thermal history of the material. Polymer plates were injection molded under symmetrical and asymmetrical cooling conditions, and the values of deflection were measured using image processing tools. Simulated and experimental results agreed within 7.5%. POLYM. ENG. SCI., 59:2220–2230, 2019. © 2019 Society of Plastics Engineers  相似文献   

14.
During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57? glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57? glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.  相似文献   

15.
16.
Internal stresses in injection molded components, a principal cause of shrinkage and warpage, are predicted using a three‐dimensional numerical simulation of the residual stress development in moldings of polystyrene and high‐density polyethylene. These residual stresses are mainly frozen‐in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region as in free quenching. Additional factors in injection molding are the effects of melt pressure history and mechanical restraints of the mold. Transient temperature and pressure fields from simulation of the injection molding cycle are used for calculating the developing normal stress distributions. Theoretical predictions are compared with measurements performed on injection molded flat plates using the layer removal method on rectangular specimens. The thermal stress development in the thinwalled moldings is analyzed using models that assume linear thermo‐elastic and linear thermo‐viscoelastic compressible behavior of the polymeric materials. Polymer crystallization effects on stresses are examined. Stresses are obtained implicitly using displacement formulations, and the governing equations are solved numerically using a finite element method. Results show that residual stress behavior can be represented reasonably well for both the amorphous and the semicrystalline polymer. Similarities in behavior between theory and experiment indicate that both material models provide satisfactory results, but the best predictions of large stresses developed at the wall surface are obtained with the thermo‐viscoelastic analysis.  相似文献   

17.
Abstract

The dimensions quality of the injection‐molded parts is the result of a complex combination of material, part, and mold designs and process conditions. In this article, warpage prediction relies on the calculation of residual stresses developed during the molding process. The solidification of a molten thermoplastic between cooled parallel plates is used to model the mechanics of part warp in the injection‐molding process. Flow effects are neglected, and a thermorheologically simple thermoviscoelastic material model is assumed. The warp and residual stresses numerical simulation with finite element method (FEM) is time dependent. At each time step, the material properties can be temperature and pressure dependent. Mold temperature or mold‐cooling rate effects on part warp have been numerically predicted and compared with experimental results. By showing the mold‐cooling effects, it was concluded that mold cooling has a significant effect on part warpage, and mold‐cooling parameters, such as mold temperature, resin temperature, cooling channels, etc., should be set carefully.  相似文献   

18.
Virgin injection‐molded tensile specimens without any inserted film and four kinds of film insert molded (FIM) tensile specimens were prepared. They were annealed at 80°C to investigate the effect of residual stresses and thermal shrinkage of the inserted film on thermal deformation of tensile specimens. The FIM specimens with the unannealed film were bent after ejection in such a way that the film side was protruded and the warpage was reversed gradually during annealing and the film side was intruded. Warpage of the FIM specimen with the film annealed at 80°C for 20 days was not reversed during annealing. Processing of the FIM specimens have been modeled numerically to predict thermoviscoelastic deformation of the part and to understand the warpage reversal phenomenon (WRP). Nonisothermal three‐dimensional flow analysis was carried out for filling, packing, and cooling stages. The flow analysis results were transported to a finite element stress analysis program for prediction of deformation of the FIM part. The WRP was caused by the combined effect of thermal shrinkage of the inserted film and relaxation of residual stresses in the FIM specimen during annealing. It is expected that this study will contribute towards the improvement of the FIM product quality and prevention of large viscoelastic deformation of the molded part. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
An experimental and theoretical study has been carried out, as a continuation of our previous investigation, to better understand the problems associated with converging flows of viscoelastic polymeric melts. In the present study, measurements were taken of both stresses and velocities in the converging velocity field of polymeric melts flowing into a tapered slit die, stresses by means of the flow birefringence technique and velocities by means of streak photography. The material used was polystyrene. A theoretical analysis was also made of converging flow, using a modified second-order fluid model which assumes that all three material functions depend on the second invariant of the rate of deformation. Numerical solutions were obtained of the equations of motion, which give predicted velocity profiles in reasonable agreement with the measured velocity profiles. A comparison was also made of the experimentally determined stress distributions with the theoretically predicted ones.  相似文献   

20.
Laser transmission welding is frequently being used increasingly for joining complex, assembly‐oriented components, thanks to its small heat affected zone. As a result of the cooling processes, residual stresses can develop inside the components, potentially leading to stress cracking and premature component failure. One subgoal of process design should therefore be to reduce the level of residual stresses as far as possible when laser welding is employed. This work looks into experimental testing for residual stresses, as a factor for the weld parameters in quasi‐simultaneous laser transmission welding, with the objective of determining the optimum welding parameters. The ARAMIS optical measuring system for deformation analysis was used to this end, in conjunction with a modified hole‐drilling method. POLYM. ENG. SCI., 50:1520–1526, 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号