首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this paper, a generic finite element formulation is developed for the static and dynamic control of FGM (functionally graded material) shells with piezoelectric sensor and actuator layers. The properties of the FGM shell are graded in the thickness direction according to a volume fraction power‐law distribution. The proposed finite element model is based on variational principle and linear piezoelectricity theory. A constant displacement and velocity feedback control algorithm coupling the direct and inverse piezoelectric effects is applied in a closed‐loop system to provide feedback control of the integrated FGM shell structure. Both static and dynamic control of FGM shells are simulated to demonstrate the effectiveness of the proposed active control scheme within a framework of finite element discretization and piezoelectric integration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
含SMA和PZT二元驱动器的智能复合材料结构形状控制   总被引:3,自引:1,他引:2  
基于有限元素法求解嵌入SMA和PZT作为联合变形驱动器的板壳型智能结构的变形,采用优化方法将最小化目标变形和实际变形差作为目标函数,确定各个驱动器的驱动电压或控制温度以实现自适应结构的任意变形控制,并考虑到了控制电压和结构温度的限制。算例结果列举了联合控制同单独PZT或SMA控制方式的控制效果对比。   相似文献   

3.
压电梁振动的多输入多输出主动控制   总被引:1,自引:1,他引:1  
对表面上贴有多个用作驱动器和传感器的压电陶瓷片的“压电梁”结构,导出了从驱动器到传感器的频响函数公式,作为压电结构设计和振动控制的数学模型。提出了压电梁对缓变周期扰动振动环境的多输入多输出振动抑制方法。  相似文献   

4.
The present study explores the modification and control of prebuckling stiffness of cylindrical shells for their potential use in smart structures. The effects of surface-bonded microfiber composite actuator patches on cylindrical shells subjected to axial compression are studied experimentally. The actuators are placed such that the distance separating them is less than the observed axial and circumferential buckling wavelengths. Strain gauge sensors are used to measure the axial strains at discrete locations on the cylindrical shell. Experimental results indicate that the actuation effect can reduce the local strains as well as improve the overall stiffness of the structure. The results obtained in this study potentially have a significant impact in space applications.  相似文献   

5.
5介绍了一种新型的压电作动器—层叠式压电作动器,并使用这种作动器对温度场中的梁进行了形状控制研究。根据哈密顿原理,得到了粘贴有层叠式压电作动器的梁结构的控制方程,进行了数值仿真,并且用Comsol软件进行了模拟,两者的结果基本一致。对压电作动器的控制电压进行了优化,得到了最优控制电压。由于层叠式压电作动器的控制力与压电片的层数成二次函数关系,当控制电压恒定时,层叠式压电作动器的控制力随着压电器层数的增加而迅速减小。使用层叠式压电作动器可以在比其他作动器更小的电压下取得更好的控制效果。通过与普通压电作动器的比较,可以发现层叠式压电作动器可以有效地降低作动器的施加电压,而且可以显著增强控制效果。这种形状控制方法为应用层叠式压电作动器进行薄壁结构的形状控制提供了理论基础。  相似文献   

6.
压电悬臂梁的动力学建模与主动控制   总被引:3,自引:8,他引:3  
董兴建  孟光 《振动与冲击》2005,24(6):54-56,64
为计及压电层的刚度特性,基于一阶剪切变形理论推导压电层合梁的抗弯刚度,由Hamilton变分原理建立压电层合梁的有限元模型,采用模态叠加方法对有限元模型降阶。在应变最大处配置制动器和传感器,基于鲁棒极点配置算法对低阶系统设计状态反馈,配置极点至期望位置。把针对低阶系统设计的控制器作用于原系统以实现振动主动控制。数值算例验证了这种力学建模方法和控制器设计方法的有效性。  相似文献   

7.
本文研究了含压电作动器和传感器层的复合材料层板理论,建立了位移和电自由度的四节点有限元素,利用总势能最小原理推导了静力平衡方程,实现和验证了含压电作动器/传感器复合材料层板静态分析有限元程序。并对该类复合材料层板进行了形状控制研究。   相似文献   

8.
含压电片复合材料层合板的高阶计算模型   总被引:1,自引:1,他引:1  
给出了一种分析含任意内埋压电片复合材料层合板的高阶耦合模型, 板的位移场采用三阶剪切理论, 并提出了压电片中电势场在厚度方向的三次分布模式, 可以更精确地描述力、电耦合作用下电场的非均匀分布。在平面应力的假设下给出了简化的压电材料本构方程, 推导了基于该模型的压电层合板有限元计算公式, 并对双压电片梁的弯曲和层合板的变形控制进行了计算, 压电梁的弯曲计算结果与解析结果吻合良好, 表明本文的模型和公式是精确有效的。  相似文献   

9.
本文研究了含压电作动器和传感器层的复合材料层板理论,建立了位移和电自由度的四节点有限元素,利用总势能最小原理推导了静力平衡方程,实现和验证了含压电作动器/传感器复合材料层板静态分析有限元程序。并对该类复合材料层板进行了形状控制研究。  相似文献   

10.
         下载免费PDF全文
This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an “equivalent single layer high order shear deformation theory”, and a “layer-wise high order shear deformation theory”, are also derived for the purpose of investigating the required number of elements across the thickness of the overall smart composite beams. Several cross-ply substrate beams are considered for presenting the results. The responses computed by the present new “smart finite element model” excellently match with those obtained by the exact solutions. The new smart finite elements developed here reveal that the development of finite element models of smart composite beams does not require the use of conventional first order or high order or layer-wise shear deformation theories of beams. Instead, the use of the presently developed locking-free 4-node elements based on conventional linear piezo-elasticity is sufficient.  相似文献   

11.
提出了一种新的压电陶瓷致动器的动态控制模型.该控制模型建立在泛布尔代数理论基础上;它依赖于压电陶瓷的控制经验.通过一系列控制规则,采用泛布尔代数的符号进行控制模型的表述.在所建模型基础上,结合PID控制器对压电陶瓷进行了Rule+PI控制的离线仿真研究;仿真结果表明,该控制模型结构简单,控制方便,易于实现.  相似文献   

12.
    
A theoretical framework is presented for analysing the coupled non‐linear response of shallow doubly curved adaptive laminated piezoelectric shells undergoing large displacements and rotations. The formulated mechanics incorporate coupling between in‐plane and flexural stiffness terms due to geometric curvature, coupling between mechanical and electric fields, and encompass geometric non‐linearity effects due to large displacements and rotations. The governing equations are formulated explicitly in orthogonal curvilinear co‐ordinates and are combined with the kinematic assumptions of a mixed‐field shear‐layerwise shell laminate theory. Based on the above formulation, a finite element methodology together with an incremental‐iterative technique, based on Newton–Raphson method is formulated. An eight‐node coupled non‐linear shell element is also developed. Various evaluation cases on laminated curved beams and cylindrical panels illustrate the capability of the shell finite element to predict the complex non‐linear behaviour of active shell structures including buckling, which is not captured by linear shell models. The numerical results also show the inherent capability of piezoelectric shell structures to actively induce large displacements through piezoelectric actuators, by jumping between multiple equilibrium states. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
    
In this paper, we present a non‐linear finite element formulation for piezoelectric shell structures. Based on a mixed multi‐field variational formulation, an electro‐mechanical coupled shell element is developed considering geometrically and materially non‐linear behavior of ferroelectric ceramics. The mixed formulation includes the independent fields of displacements, electric potential, strains, electric field, stresses, and dielectric displacements. Besides the mechanical degrees of freedom, the shell counts only one electrical degree of freedom. This is the difference in the electric potential in the thickness direction of the shell. Incorporating non‐linear kinematic assumptions, structures with large deformations and stability problems can be analyzed. According to a Reissner–Mindlin theory, the shell element accounts for constant transversal shear strains. The formulation incorporates a three‐dimensional transversal isotropic material law, thus the kinematic in the thickness direction of the shell is considered. The normal zero stress condition and the normal zero dielectric displacement condition of shells are enforced by the independent resultant stress and the resultant dielectric displacement fields. Accounting for material non‐linearities, the ferroelectric hysteresis phenomena are considered using the Preisach model. As a special aspect, the formulation includes temperature‐dependent effects and thus the change of the piezoelectric material parameters due to the temperature. This enables the element to describe temperature‐dependent hysteresis curves. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
压电智能结构振动控制中执行元件最优位置的选择   总被引:1,自引:0,他引:1  
采用模态分析及控制理论,确定了定量度量模态对贮存在结构中能量积分贡献的方法。利用奇异值分解技术确定了定量度量模态可控程度的方法。以压电智能结构振动控制效果为目标,将两个度量指标加权结合,构造了一种新的度量压电智能结构可控程度的指标,并以此为选择压电执行元件最优位置的依据。最后给出数值示例说明文中方法的有效性  相似文献   

15.
This paper deals with optimal shape control of functionally graded smart plate containing patches of piezoelectric sensors and actuators. The genetic algorithm (GA) is designed to search for optimal actuator voltage and displacement control gains for the shape control of the functionally graded material (FGM) plates. The work extends the earlier finite element formulations of the two leading authors, so that it can be readily treated using genetic algorithms. Numerical results have been obtained to study the effect of the shape control of the FGM plates under a temperature gradient by optimising (i) the voltage distribution for the open loop control, and (ii) the displacement control gain values for the closed loop feedback control. The effect of the constituent volume fractions of zirconia, through varying the volume fraction exponent n, on the optimal voltages and gain values has also been examined.  相似文献   

16.
    
In this paper, a coupled multi-field mechanics framework is presented for analyzing the non-linear response of shallow doubly curved adaptive laminated piezoelectric shells undergoing large displacements and rotations in thermal environments. The mechanics incorporate coupling between mechanical, electric and thermal fields and encompass geometric non-linearity effects due to large displacements and rotations. The governing equations are formulated explicitly in orthogonal curvilinear coordinates and are combined with the kinematic assumptions of a mixed-field shear-layerwise shell laminate theory. A finite element methodology and an eight-node coupled non-linear shell element are developed. The discrete coupled non-linear equations of motion are linearized and solved, using an extended cylindrical arc-length method together with a Newton–Raphson technique, to enable robust numerical predictions of non-linear active shells transitioning between multiple stable equilibrium paths. Validation and evaluation cases on laminated cylindrical strips and cylindrical panels demonstrate the accuracy of the method and its robust capability to predict non-linear response under thermal and piezoelectric actuator loads. Moreover, the results illustrate the capability of the method to model piezoelectric shells undergoing large shape changes by actively jumping between stable equilibrium states and quantify the strong relationship between shell curvature, applied electric potential, applied temperature differential and induced shape change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Finite element modelling is used to study the response of plate structures on which piezoelectric active devices are mounted. Such devices are typically small in relation to the size of the structure which can be modelled as a plate or shell structure. In modelling the response of such devices, it is necessary to use a detailed model of the device but to do the same for the whole structure is computationally expensive and unnecessary. Full three-dimensional elements are used to model the piezoelectric devices because such devices are anisotropic, couple electric and elastic fields and satisfy boundary conditions independently on the two fields. Shell elements, approximated by many flat-shell elements are used in modelling the structure. Transition elements have been derived to connect the three-dimensional solid elements in the piezoelectric region to the flat-shell elements used for the plate. This approach has merits in terms of accuracy in modelling the piezoelectric device and computational economy for the plate structure. The use of shell elements is preferred for the structure since brick elements lead to unnatural stiffening of the plate and artificially high natural frequencies. The aspect ratio of the transition elements are first optimized through a numerical study and the sensor and actuator performance of the devices is then verified. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
    
This paper is concerned with a geometrically non‐linear solid shell element to analyse piezoelectric structures. The finite element formulation is based on a variational principle of the Hu–Washizu type and includes six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and dielectric displacements. The element has eight nodes with four nodal degrees of freedoms, three displacements and the electric potential. A bilinear distribution through the thickness of the independent electric field is assumed to fulfill the electric charge conservation law in bending dominated situations exactly. The presented finite shell element is able to model arbitrary curved shell structures and incorporates a 3D‐material law. A geometrically non‐linear theory allows large deformations and includes stability problems. Linear and non‐linear numerical examples demonstrate the ability of the proposed model to analyse piezoelectric devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
    
Adhesive bonding has been widely used to join or repair metallic and composite structural components to achieve or restore their designated structural stiffness and strengths. However, current analysis methods and empirical databases for composite bonded patch repairs or joints are limited to flat structures, and there exists a very limited knowledge on the effect of curvature on the performance and durability of composite bonded joints and repairs. Recently, a novel finite element formulation was presented for developing adhesive elements for conducting 2.5‐D simplified stress analysis of bonded repairs to curved structures. This paper presents the work on optimal shape design of a bonded curved composite patch using the newly developed adhesive element. The Sequential Linear Programming (SLP) method is employed as the optimization algorithm in conjunction with a fully implemented mesh generation algorithm into which new features have been incorporated. The objective of shape optimization is to minimize the maximum stress in the entire adhesive layer to ensure that the bonded patch effectively works together with the parent structure in service. Several different objective functions, related to possible failure mechanisms of the adhesive layer, are proposed to optimize the shape of a bonded patch. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
基于一阶剪切效应Mindlin板理论,建立了在热载下含分布式压电作动器的复合材料层合板有限元分析模型和控制方程,分别研究了该板在内外表面存在温差的情况下的热变形,以及使用压电作动器对热变形区域进行形状修复的问题;在分析中考虑了压电作动器与复合材料层合板间含有胶接层的影响。由典型算例结果讨论,得到如下结论:1)使用压电作动器可以有效地对复合材料层合板的表面热变形形状进行修复;2)压电作动器的分布位置对修复效果影响很大;3)在电压达到一定数值后,继续增加电压值对修复效果贡献很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号