首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today, more and more distributed computer applications are being modeled and constructed using real‐time principles and concepts. In 1989, the Object Management Group (OMG) formed a Real‐Time Special Interest Group (RT SIG) with the goal of extending the Common Object Request Broker Architecture (CORBA) standard to include real‐time specifications. This group's most recent efforts have focused on the requirements of dynamic distributed real‐time systems. One open problem in this area is resource access synchronization for tasks employing dynamic priority scheduling. This paper presents two resource synchronization protocols that the authors have developed which meet the requirements of dynamic distributed real‐time systems as specified by Dynamic Scheduling Real‐Time CORBA (DSRT CORBA). The proposed protocols can be applied to both Earliest Deadline First (EDF) and Least Laxity First (LLF) dynamic scheduling algorithms, allow distributed nested critical sections, and avoid unnecessary runtime overhead. In order to evaluate the performance of the proposed protocols, we analyzed each protocol's schedulability. Since the schedulability of the system is affected by numerous system configuration parameters, we have designed simulation experiments to isolate and illustrate the impact of each individual system parameter. Simulation experiments show the proposed protocols have better performance than one would realize by applying a schema that utilizes dynamic priority ceiling update. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
During the last decade, the number of distributed application domains with temporal requirements has significantly augmented, arising the necessity of exploring new concepts and paradigms that allow, on the one hand, the development of dynamic and flexible distributed applications and, on the other hand, the reusability of code. Service‐oriented paradigms have been successfully applied to distributed environments, increasing their flexibility and allowing the reusability of their components. Besides, distributed real‐time Java technologies have shown to be a good candidate to deploy real‐time distributed applications. This paper presents a model for service‐oriented applications on a time‐triggered distributed real‐time Java environment, focusing on the definition of the temporal model of an application and its schedulability, applying and evaluating this model in real‐time service‐oriented composition algorithms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes the application of modern component‐oriented technologies to the development of nuclear power plant simulators. On the one hand, as a significant improvement on previous simulators, the new kernel is based on the Common Component Architecture (CCA). The use of such a high‐performance computing oriented component technology, together with a novel algorithm to automatically resolve simulation data dependencies, allows the efficient execution of both parallel and sequential simulation models. On the other hand, RT‐CORBA is employed in the development of the rest of the applications that comprise the simulator. This real‐time communication middleware not only makes the management of communications easier, but also provides the applications with real‐time capabilities. Software components used in these two ways, simulation models integrating the kernel and distributed applications from which the simulator is comprised, improve the evolution and maintenance of the entire system, as well as promoting code reusability in other projects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We present a new real‐time approach to simulate deformable objects using a learnt statistical model to achieve a high degree of realism. Our approach improves upon state‐of‐the‐art interactive shape‐matching meshless simulation methods by not only capturing important nuances of an object's kinematics but also of its dynamic texture variation. We are able to achieve this in an automated pipeline from data capture to simulation. Our system allows for the capture of idiosyncratic characteristics of an object's dynamics which for many simulations (e.g. facial animation) is essential. We allow for the plausible simulation of mechanically complex objects without knowledge of their inner workings. The main idea of our approach is to use a flexible statistical model to achieve a geometrically‐driven simulation that allows for arbitrarily complex yet easily learned deformations while at the same time preserving the desirable properties (stability, speed and memory efficiency) of current shape‐matching simulation systems. The principal advantage of our approach is the ease with which a pseudo‐mechanical model can be learned from 3D scanner data to yield realistic animation. We present examples of non‐trivial biomechanical objects simulated on a desktop machine in real‐time, demonstrating superior realism over current geometrically motivated simulation techniques.  相似文献   

5.
This paper describes a novel real‐time multi‐spectral imaging capability for surveillance applications. The capability combines a new high‐performance multi‐spectral camera system with a distributed algorithm that computes a spectral‐screening principal component transform (PCT). The camera system uses a novel filter wheel design together with a high‐bandwidth CCD camera to allow image cubes to be delivered at 110 frames s with a spectral coverage between 400 and 1000 nm. The filters used in a particular application are selected to highlight a particular object based on its spectral signature. The distributed algorithm allows image streams from a dispersed collection of cameras to be disseminated, viewed, and interpreted by a distributed group of analysts in real‐time. It operates on networks of commercial‐off‐the‐shelf multiprocessors connected with high‐performance (e.g. gigabit) networking, taking advantage of multi‐threading where appropriate. The algorithm uses a concurrent formulation of the PCT to de‐correlate and compress a multi‐spectral image cube. Spectral screening is used to give features that occur infrequently (e.g. mechanized vehicles in a forest) equal importance to those that occur frequently (e.g. trees in the forest). A human‐centered color‐mapping scheme is used to maximize the impact of spectral contrast on the human visual system. To demonstrate the efficacy of the multi‐spectral system, plant‐life scenes with both real and artificial foliage are used. These scenes demonstrate the systems ability to distinguish elements of a scene that cannot be distinguished with the naked eye. The capability is evaluated in terms of visual performance, scalability, and real‐time throughput. Our previous work on predictive analytical modeling is extended to answer practical design questions such as ‘For a specified cost, what system can be constructed and what performance will it attain?’ Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Unmeasurable object deformation and local communication time delays between the slave robots influence the manipulation effect for multirobot multioperator teleoperation. In this article, a distributed control method based on high‐gain nonlinear observer, interactive identification, and impedance control is proposed for this problem. First, we use Hunt‐Crossley contact model and deduce the desired synchronizing object state in cooperative teleoperation. Second, an impedance item expressed by the internal position errors is presented to decrease object position tracking errors. For the unmeasurable object deformation, an interactive identification method is proposed for estimating unknown variables. Third, we consider both varying communication time delays and local time delays in the slave side. Two mirror high‐gain nonlinear observers are designed for estimating other slave robots' real‐time state. Finally, we build the system controllers and prove the stability of the closed‐loop system and the boundless of estimating errors using Lyapunov functions. Comparable simulation results executed by the physical system present that the position and internal force tracking errors of the object decrease in the designated cooperative tasks.  相似文献   

7.
A hard real‐time kernel is presented for distributed computer control systems (DCCS), highlighting a number of novel features, such as integrated scheduling of hard and soft real‐time tasks as well as tasks and resources; high‐performance time management supporting safe DCCS operation in a hard real‐time environment; synchronization and communication featuring event notification via vector semaphores and transparent communication through implicit (content‐oriented) message addressing. Conventional queues have been substituted by Boolean vectors and vector processing techniques throughout the kernel, resulting in efficient and highly deterministic behaviour, which is characterized by very low overhead and constant execution time of kernel operations, independent of the number of tasks involved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Reducing power consumption has been an essential requirement for Cloud resource providers not only to decrease operating costs, but also to improve the system reliability. As Cloud computing becomes emergent for the Anything as a Service (XaaS) paradigm, modern real‐time services also become available through Cloud computing. In this work, we investigate power‐aware provisioning of virtual machines for real‐time services. Our approach is (i) to model a real‐time service as a real‐time virtual machine request; and (ii) to provision virtual machines in Cloud data centers using dynamic voltage frequency scaling schemes. We propose several schemes to reduce power consumption by hard real‐time services and power‐aware profitable provisioning of soft real‐time services. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a disturbance observer–based adaptive boundary layer sliding mode controller (ABLSMC) is proposed to compensate external disturbance and system uncertainty for a class of output coupled multiple‐input multiple‐output (MIMO) nonlinear systems. To show the effectiveness of the proposed ABLMSC, a traditional adaptive sliding mode controller (ASMC) is also designed. The stability of the closed‐loop system is examined by using the Lyapunov stability approach. The proposed control approach is implemented for a class of nonlinear output coupled MIMO systems. For real‐time validation, a coupled tank system is considered for study. Finally, simulation and real‐time results show that the proposed ABLMSC gives better performance such as reduced chattering and energy efficiency than that of the ASMC and some reported works in the literature.  相似文献   

10.
The trends in parallel processing system design and deployment have been toward networked distributed systems such as cluster computing systems. Since the overall performance of such distributed systems often depends on the efficiency of their communication networks, performance analysis of the interconnection networks for such distributed systems is paramount. In this paper, we develop an analytical model, under non‐uniform traffic and in the presence of communication locality, for the m‐port n‐tree family interconnection networks commonly employed in large‐scale cluster computing systems. We use the proposed model to study two widely used interconnection networks flow control mechanism namely the wormhole and store&forward. The proposed analytical model is validated through comprehensive simulation. The results of the simulation demonstrated that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A large parallel‐cable manipulator for the feed‐supporting system of a next‐generation large radio telescope is presented in this paper. The approximate kinematics model of the system is developed to improve real‐time controllability, and the rationality of this approximation is validated by a kinematics accuracy analysis. In order to guarantee the effectiveness of control, the singularity of the large parallel‐cable manipulator is analyzed (including kinematics and force singularities). The control strategy of the parallel‐cable feed‐supporting system is also proposed. © 2001 John Wiley & Sons, Inc.  相似文献   

12.
In this paper, we study the cooperative robust output regulation problem for discrete‐time linear multi‐agent systems with both communication and input delays by a distributed internal model approach. We first introduce the distributed internal model for discrete‐time multi‐agent systems with both communication and input delays. Then, we define the so‐called auxiliary system and auxiliary augmented system. Finally, we solve our problem by showing, under some standard assumptions, that if a distributed state feedback control or a distributed output feedback control solves the robust output regulation problem of the auxiliary system, then the same control law solves the cooperative robust output regulation problem of the original multi‐agent systems.  相似文献   

13.
This paper presents a novel design of face tracking algorithm and visual state estimation for a mobile robot face tracking interaction control system. The advantage of this design is that it can track a user's face under several external uncertainties and estimate the system state without the knowledge about target's 3D motion‐model information. This feature is helpful for the development of a real‐time visual tracking control system. In order to overcome the change in skin color due to light variation, a real‐time face tracking algorithm is proposed based on an adaptive skin color search method. Moreover, in order to increase the robustness against colored observation noise, a new visual state estimator is designed by combining a Kalman filter with an echo state network‐based self‐tuning algorithm. The performance of this estimator design has been evaluated using computer simulation. Several experiments on a mobile robot validate the proposed control system. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
A data‐driven approach for the real‐time processing of clothes, particularly suitable for simulating dresses worn by virtual characters, is proposed. It starts, prior to real‐time simulation, by analyzing cloth behavior in relation to the underlying skeleton movement from a presimulated sequence of the cloth obtained using any high‐quality off‐line simulators. The idea is to use this analysis to find an optimal combination of physics‐based simulation and geometric approximation of the simulator; potentially colliding regions are defined on the cloth such that they will hold true for the skeleton movement that closely matches that of presimulated sequence. At runtime, using these analyses, our simulation process provides both visually pleasing results and performance, as long as the motion of the character remains sufficiently close to the original sequence used for the precomputation. The key contributions of this paper are (1) efficient collision handling that prunes out potentially colliding objects by using the off‐line simulation sequence as examples; (2) data‐driven fix‐up process for the coarse mesh simulation that deduces the gross behavior of the cloth; and (3) geometric approximation of the fine mesh deformation, responsible for details in the shape of the cloth such as wrinkles.  相似文献   

15.
A. Egan  D. Kutz  D. Mikulin  R. Melhem  D. Moss 《Software》1999,29(4):379-395
Even though real‐time systems have the stringent constraint of completing tasks before their deadlines, many existing real‐time operating systems do not implement fault tolerance capabilities. In this paper we summarize fault tolerant real‐time scheduling policy for dynamic tasks with ready times and deadlines. Our focus in this paper is the implementation, which includes fault‐tolerant scheduling, re‐scheduling, and recovery mechanisms in the FT‐RT‐Mach operating system, a fault‐tolerant version of RT‐Mach. A real‐time train control application is then implemented using the FT‐RT‐Mach operating system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a distributed model predictive control algorithm for the consensus of nonlinear second‐order multi‐agent systems. At each update time, all the agents are permitted to optimize. A positively invariant terminal region and a corresponding auxiliary controller are developed for each agent. Furthermore, time‐varying compatibility constraint is presented to denote a degree of consistency between the assumed trajectories and the actual trajectories of each agent. Given the designed terminal ingredients (terminal region, auxiliary controller, and terminal cost) and compatibility constraints, the recursive feasibility and closed‐loop stability of the whole system are guaranteed. The simulation results are given to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The distributed output‐feedback tracking control for a class of networked multiagents in nonaffine pure‐feedback form is investigated in this article. By introducing a low‐pass filter and some auxiliary variables, we first transform the nonaffine system into the affine form. Then, the finite‐time observer is designed to estimate the states of the newly derived affine system. By applying the fraction dynamic surface control approach and the neural network‐based approximation technique, the distributed output‐feedback control laws are proposed and it is proved that the tracking errors converge to an arbitrarily small bound around zero in finite time. Finally, some simulation examples are provided to confirm the effectiveness of the developed method.  相似文献   

18.
Controlling a crowd using multi‐touch devices appeals to the computer games and animation industries, as such devices provide a high‐dimensional control signal that can effectively define the crowd formation and movement. However, existing works relying on pre‐defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data‐driven gesture‐based crowd control system, in which the control scheme is learned from example gestures provided by different users. In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run‐time gesture, our system extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the run‐time control. Our system is accurate and efficient, making it suitable for real‐time applications such as real‐time strategy games and interactive animation controls.  相似文献   

19.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

20.
A key challenge in autonomous mobile manipulation is the ability to determine, in real time, how to safely execute complex tasks when placed in unknown or changing world. Addressing this issue for Intervention Autonomous Underwater Vehicles (I‐AUVs), operating in potentially unstructured environment is becoming essential. Our research focuses on using motion planning to increase the I‐AUVs autonomy, and on addressing three major challenges: (a) producing consistent deterministic trajectories, (b) addressing the high dimensionality of the system and its impact on the real‐time response, and (c) coordinating the motion between the floating vehicle and the arm. The latter challenge is of high importance to achieve the accuracy required for manipulation, especially considering the floating nature of the AUV and the control challenges that come with it. In this study, for the first time, we demonstrate experimental results performing manipulation in unknown environment. The Multirepresentation, Multiheuristic A* (MR‐MHA*) search‐based planner, previously tested only in simulation and in a known a priori environment, is now extended to control Girona500 I‐AUV performing a Valve‐Turning intervention in a water tank. To this aim, the AUV was upgraded with an in‐house‐developed laser scanner to gather three‐dimensional (3D) point clouds for building, in real time, an occupancy grid map (octomap) of the environment. The MR‐MHA* motion planner used this octomap to plan, in real time, collision‐free trajectories. To achieve the accuracy required to complete the task, a vision‐based navigation method was employed. In addition, to reinforce the safety, accounting for the localization uncertainty, a cost function was introduced to keep minimum clearance in the planning. Moreover a visual‐servoing method had to be implemented to complete the last step of the manipulation with the desired accuracy. Lastly, we further analyzed the approach performance from both loose‐coupling and clearance perspectives. Our results show the success and efficiency of the approach to meet the desired behavior, as well as the ability to adapt to unknown environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号