首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fracture behavior of biodegradable fiber–reinforced composites as a function of fiber content under different loading conditions was investigated. Composites with different fiber content, ranging from 5 to 20 wt%, were prepared using commercial starch‐based polymer and short sisal fibers. Quasistatic fracture studies as well as instrumented falling weight impact tests were performed on the composites and the plain matrix. Results showed a significant increase in the crack initiation resistance under quasistatic loading. This was caused by the incorporation of sisal fibers to the matrix and the development of failure mechanisms induced by the presence of the fibers. On the other hand, a modest increasing trend of the resistance to crack initiation with fiber loading was detected. An improved fracture behavior was also observed when the impact loading was parallel to the thickness direction. Under these experimental conditions, the composites exhibited higher values of ductility index, energy at initiation and total fracture energy than the plain matrix. Furthermore, an increasing trend of these parameters with fiber content was detected in the biocomposites. Overall, the addition of sisal fibers to the biodegradable matrix appears to be an efficient mean of improving fracture behavior under both quasistatic and impact loading conditions. POLYM. COMPOS. 26:316–323, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
The melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variation of melt viscosity with shear rate and shear stress at different temperatures was studied. The effect of relative composition of component fibers on the overall rheological behavior also was examined. A temperature range of 130 to 150°C and shear rate of 16.4 to 5470 s?1 were chosen for the analysis. The melt viscosity of the hybrid composite increased with increase in the volume fraction of glass fibers and reached a maximum for the composite containing glass fiber alone. Also, experimental viscosity values of hybrid composites were in good agreement with the theoretical values calculated using the additive rule of hybrid mixtures, except at low volume fractions of glass fibers. Master curves were plotted by superpositioning shear stress and temperature results. The breakage of fibers during the extrusion process, estimated by optical microscopy, was higher for glass fiber than sisal fiber. The surface morphology of the extrudates was analyzed by optical and scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 432–442, 2003  相似文献   

3.
Cellulose nanofibers were extracted from sisal and incorporated at different concentrations (0–5%) into cassava starch to produce nanocomposites. Films' morphology, thickness, transparency, swelling degree in water, water vapor permeability (WVP) as well as thermal and mechanical properties were studied. Cellulose nanofiber addition affected neither thickness (56.637 ± 2.939 µm) nor transparency (2.97 ± 1.07 mm?1). WVP was reduced until a cellulose nanofiber content of 3.44%. Tensile force was increased up to a nanocellulose concentration of 3.25%. Elongation was decreased linearly upon cellulose nanofiber addition. Among all films, the greatest Young's modulus was 2.2 GPa. Cellulose nanofibers were found to reduce the onset temperature of thermal degradation, although melting temperature and enthalpy were higher for the nanocomposites. Because cellulose nanofibers were able to improve key properties of the films, the results obtained here can pave the route for the development and large‐scale production of novel biodegradable packaging materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44637.  相似文献   

4.
Jute fibers were treated with 5% NaOH solution for 4 and 8 h, respectively, to study the mechanical and impact fatigue properties of jute‐reinforced vinylester resin matrix composites. Mechanical properties were enhanced in case of fiber composites treated for 4 h, where improved interfacial bonding (as evident from scanning electron microscopy [SEM]) and increased fiber strength properties contributed effectively in load transfer from the matrix to the fiber; but their superior mechanical property was not retained with fatigue, as they showed poor impact fatigue behavior. The fracture surfaces produced under a three‐point bend test and repeated impact loading were examined under SEM to study the nature of failure in the composites. In case of untreated fiber composites, interfacial debonding and extensive fiber pullout were observed, which lowered the mechanical property of the composites but improved their impact fatigue behavior. In composites treated for 4 h under repeated impact loading, interfacial debonding occurred, followed by fiber breakage, producing a sawlike structure at the fracture surface, which lowered the fatigue resistance property of the composites. The composites with fibers treated with alkali for 8 h showed maximum impact fatigue resistance. Here, interfacial debonding was at a minimum, and the fibers, being much stronger and stiffer owing to their increased crystallinity, suffered catastrophic fracture along with some microfibrillar pullout (as evident from the SEM micrographs), absorbing a lot of energy in the process, which increased the fatigue resistance property of the composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2588–2593, 2002  相似文献   

5.
This research deals with the melt rheology of isotactic polypropylene (iPP) reinforced with short glass fibers (SGF) coated with electrically conductive polyaniline (PAn). Composites containing 10, 20, and 30 wt % PAn‐SGF were studied. Moreover, a composite of 30 wt % PAn‐SGF was also prepared with a blend of iPP and PP‐grafted‐maleic anhydride (iPP/PP‐gMA). The composites showed linear viscoelastic regime at small strain amplitudes. The onset of nonlinearity decreased as the concentration of filler increased. The time‐temperature superposition principle applied to all composites. The filler increased the shear moduli (G′, G″) and the complex viscosity η*. Steady‐state shear experiments showed yield stress for the composites with 20 and 30 wt % PAn‐SGF. Strikingly, the 10 wt % composite showed higher steady state viscosity than the 20 wt %. Rheo‐optics showed that shear induced disorder of microfibers at a concentration of 10 wt %. However, at 20 wt % concentration shear aligned the microfibers along the flow axis, this would explain the anomalous steady state viscosity values. The viscosity exhibited a shear thinning behavior at high shear rates for all composites. Creep experiments showed that the filler induced greater strain recovery in the composites and that the amount of strain recovery increased as the PAn‐SGF concentration increased. However, the enhancement of strain recovery (as well as shear viscosity) was more significant when using the iPP/PP‐gMA blend, suggesting greater adhesion between this matrix and the filler PAn‐SGF. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The fire behaviour of sisal short fibers reinforeed gypsum in laboratory tests is described Specially designed testing equipment that is easily available has been implemented in this work to analyze the fibers under load and their composite fire performance.  相似文献   

7.
The thermal behavior of vinyl ester resin matrix composites reinforced with jute fibers treated for 2, 4, 6, and 8 h with 5% NaOH was studied with Thermo‐gravimetric analysis and differential scanning calorimetry. The moisture desorption peak shifted to a higher temperature, from 37 to 58.3°C, for all the treated‐fiber composites because of improved wetting of the fibers by the resin and stronger bonding at the interface. The degradation temperature of the vinyl ester resin in the composites was lowered to 410.3°C from that of the neat resin, 418.8°C. The X‐ray diffraction studies showed increased crystallinity of the treated fibers, which affected the enthalpy of the α‐cellulose and hemicellulose degradation. The hemicellulose degradation temperature remained the same (299.7°C) in all the treated‐fiber composites, but the enthalpy associated with the hemicellulose degradation showed an increasing trend in the treated composites with a small increase in the weight loss. This could be attributed to the increased hydrogen bonding between the more accessible ? OH groups of the hemicellulose in the noncrystalline region of the jute fiber and the resin. The degradation temperature of α‐cellulose was lowered from 364.2 to 356.8°C in the treated composites. The enthalpy of α‐cellulose degradation showed a decreasing trend with a lowering of the weight loss. The crystalline regions of the fiber, consisting of closely packed α‐cellulose chains, were bonded with the resin mainly on the surface through hydrogen bonds and became more resistant to thermal degradation; this reduced the weight loss. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 123–129, 2004  相似文献   

8.
The effect of chemical modification of both fiber and matrix on melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variations of melt viscosity with different shear rate and shear stress values for different temperatures were studied. A temperature range of 130 to 150°C and shear rates of 16.4 to 5468 s?1 were chosen for the analysis. Chemical modifications with stearic acid, maleic anhydride, silane, and peroxides were tested for their ability to improve the interaction between the matrix and fiber. The viscosity of the hybrid composites increases with every chemical modification. In the case of peroxide‐treated composites, the increase can be attributed to the peroxide‐induced grafting of the polyethylene matrix to the fiber surface and to the crosslinking of the polyethylene matrix. These phenomena are both activated by temperature, whereas temperature causes a reverse effect for all other chemical modifications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 443–450, 2003  相似文献   

9.
Kevlar fibers (DuPont) and glass fibers have been used to reinforce linear lowdensity polyethylene (LLDPE) by using an elastic melt extruder and the compression molding technique. The impact behavior of hybrid composites of different compositions is compared and has been explained on the basis of volume fraction of fibers. The addition of glass fibers decreases the Izod impact strength of LLDPE. The Izod impact strength of the composite increses when glass fibers are replaced by Kevlar fibers. Dynamic mechanical α‐relaxation is studied and the effect of variation of fiber composition on the relaxation is reported in the temperature range from −50°C to 150°C at 1 Hz frequency. The α‐relaxation shifts towards the higher temperature side on addition of fibers in LLDPE. The addition of fibers increases the storage modulus, E′, of LLDPE. The hybridization of Kevlar and glass fibers helps in desiging composites with a desirable combination of impact strength and modulus. At the low temperature region, E′ increases significantly with glass fibers as compared to that noted with the addition of Kevlar fibers. The α‐transition temperature of composites increases significantly with Kevlar fibers as compared to that observed with addition of glass fibers.  相似文献   

10.
The two simplest models that can be put forward to account for the elasticity of composite materials are the Reuss model and the Voigt model in which the constituents undergo, respectively, the same stress or the same strain. Experimental measurements always fall between the values predicted by these models. We propose correcting the Reuss model by stating σf and ?m being the average stresses undergone, respectively, by reinforcing agent and the matrix. Similarly, we shall modify the Voigt model by supposing σf and ?m being the average strain undergone, respectively, by reinforcing agent and the matrix. K and L are interrelated tensors which depend on the nature of the reinforcing agent, on its possible orientation, and on the mechanical behavior of the interface and also on the moduli of the constituents. We have developed the equations for determining the tensors with regard to fiber composite, taking into account the characteristics of the fibers (length, diameter, orientation, interface). The evaluation of K and L enables us, therefore, to calculate the modulus or the compliance. Conversly, by measuring the modules or the complience, one can determine K or L and , in this way, obtain data on the machnism of load transfer from the matrix to the reingforcing agent and thus on the behavior of their interface. The theoretical values of the Young modules calculated from our model are in good agreement with the experemental values obtained by Lees.8  相似文献   

11.
The tensile properties of polystyrene reinforced with short sisal fiber and benzoylated sisal fiber were studied. The influence of fiber length, fiber content, fiber orientation, and ben-zoylation of the fiber on the tensile properties of the composite were evaluated. The ben-zoylation of the fiber improves the adhesion of the fiber to the polystyrene matrix. the benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicate a better compatibility between benzoylated fiber and polystyrene. the benzoylation of the sisal fiber was found to enhance the tensile properties of the resulting composite. The tensile properties of unidirectionally aligned composites show a gradual increase with fiber content and a leveling off beyond 20% fiber loading. The properties were found to be almost independent of fiber length although the ultimate tensile strength shows marginal improvement at 10 mm fiber length. The thermal properties of the composites were analyzed by differential scanning calorimetry. Scanning electron microscopy was used to investigate the fiber surface, fiber pullout, and fiber–matrix interface. Theoretical models have been used to fit the experimental mechanical data. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Short basalt fiber (BF) reinforced polyimide (PI) composites were fabricated by means of compression‐molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring‐on‐block test rig under dry sliding conditions. The morphologies of the worn surfaces and the transfer films that formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The influence of the short BF content, load, and sliding speed on the tribological behavior of the PI composites was examined. Experimental results revealed that the low incorporation of BFs could improve the tribological behavior of the PI composites remarkably. The friction coefficient and wear rate decreased with increases in the sliding speed and load, respectively. The transfer film that formed on the counterpart surface during the friction process made contributions to reducing the friction coefficient and wear rate of the BF‐reinforced PI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Sisal fibers were used for the reinforcement of a polypropylene (pp) matrix. Composites consisting of polypropylene reinforced with short sisal fibers were prepared by melt‐mixing and solution‐mixing methods. A large amount of fiber breakage was observed during melt mixing. The fiber breakage analysis during composite preparation by melt mixing was carried out using optical microscopy. A polynomial equation was used to model the fiber‐length distribution during melt mixing. The experimental mechanical properties of sisal/PP composites were compared with existing theoretical models such as the modified rule of mixtures, parallel and series models, the Hirsch model, and the Bowyer–Baders model. The dependence of the tensile strength on the angle of measurement with respect to fiber orientation also was modeled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 602–611, 2003  相似文献   

14.
Thermoplastic matrix composites have recently emerged as promising engineering materials because of their desirable properties such as high service temperatures, high impact resistance, and processing advantages. However, residual stresses in composites introduced during fabrication are cited as one of the most significant problems in the processing of composites. In some instances these stresses have been shown to significantly degrade the strength of the material, resulting in matrix cracking, debonding, reduced fracture toughness, and delamination. In this work, studies have been carried out on glass fiber reinforced polypropylene composites formed by compression molding process from co-mingled fabrics. The fibers were pre-stressed during the process to produce high performance composite products with low residual microstresses, which are harmful to the properties of the composite. Mechanical tests showed that pre-stress can increase the tensile, flexural and interlaminar shear properties of the composites, and there exists an optimum pre-stress level to gain best properties for each external loading condition.  相似文献   

15.
Low‐density polyethylene (LDPE)‐coated sisal fiber prepreg was prepared by using solution coating process. These coated fiber prepregs were consolidated to make composites having different weight fraction of sisal fibers in a hot compression‐molding machine. This experimental study reveals that higher loading of sisal fiber up to 57wt% in LDPE–sisal composites is possible by this technique. Mechanical and abrasive wear characteristics of these composites were determined. The tensile strength of composites increased with the increase in sisal fiber concentration. Coating thickness of LDPE was varied by changing the viscosity of LDPE–xylene solution that manifested to different weight fraction of fiber in sisal–LDPE composites. Mechanical, dynamic mechanical, and abrasive wear characteristics of these composites were determined. The tensile strength and modulus of sisal composites reached to 17.4 and 265 MPa, respectively, as compared to 7.1 and 33MPa of LDPE. Storage modulus of sisal composites LD57 reached to 2.7 × 109 MPa at 40°C as compared to 8.1 × 108 MPa of LDPE. Abrasive wear properties of LDPE and its composites were determined under multi‐pass mode; pure LDPE showed minimum specific wear rate. The specific wear rate of composites decreased with the sliding distance. Increase of coated sisal fiber content increased the specific wear rate at all the sliding distances, which has been explained on the basis of worn surface microstructures observed by using SEM. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
Thermoplastics reinforced with natural fibers have attracted much attention from researchers because of their advantages, especially regarding environmental aspects. However, poor impact strength, particularly at low temperatures, limits the application of some thermoplastics, such as polypropylene (PP). To minimize this drawback, impact modifiers have been used, including the terpolymer of ethylene‐propylene‐diene (EPDM). In this work, PP/EPDM/sisal composites of distinct compositions were investigated focusing on the effect of the alkali (NaOH) treatment of the vegetable fiber on the composites properties regarding physical, mechanical, thermal, and morphological behavior. The results indicated that flow rate decreases at higher fiber content due to flow hindering by the presence of the fibers. The addition of the fiber, in general, increased Young's modulus and strength (tensile and flexural), whereas impact strength increased for higher EPDM content. The alkali treatment was considered generally efficient in terms of mechanical properties, even though this was not found in the dynamic mechanical analysis. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
Sisal fiber‐reinforced epoxy composites having three different fiber orientations, namely LL, LT, TT mentioned in the text were prepared and tested for their high stress abrasive wear behavior. Effect of fiber orientation, sliding distance, and load on abrasive wear of sisal–epoxy composites have been determined. Wear data of composites have been compared with the pure epoxy. Incorporation of fibers decreases the wear rate of epoxy resin, which varies with the fiber orientation. Wear rate in case of TT composite is found minimum as compared to other two composites. Wear rate follows the following trend, WTT < WLT < WLL. Owing to minimum exposed area of fiber to the sliding asperities, lowest wear rate occurs in the case of TT composite. Increase of load and sliding distance increases the wear volume in all the composites, because of the progressive loss of material. Wear mechanism has been discussed by using SEM micrographs of the worn surfaces. POLYM. COMPOS., 28:437–441, 2007. © 2007 Society of Plastics Engineers.  相似文献   

18.
This study is an analytical investigation of processability of biopolymer‐carbon based nanofiller composites primarily through rheological investigation of samples. The composites were fabricated via dry mixing and melt‐blending of biodegradable polylactide (PLA) and nanographite platelets (NGP) in a Brabender twin screw extruder. A range of different nanofiller contents (1, 3, 5, 7, and 10 wt %) were studied for NGP containing composites. The morphology was studied with X‐ray diffraction and transmission electron microscopy techniques and showed poor dispersion, with agglomerates, tactoids, and exfoliated layers present. Mechanical properties showed an optimum at 3 wt % filler. Results showed that the composites exhibited higher elastic and viscous moduli than neat PLA. The rheological percolation threshold predicted by changes in slope (α) as well as liquid–solid transition theory of samples was found around 3 wt % through the change from liquid‐like behavior to pseudo‐solid‐like behavior at terminal region during dynamic oscillatory measurements. NGP nanofillers were found to enhance the viscoelastic and mechanical properties of PLA at low concentrations; however, an efficient dispersion of nanofillers within polymer by melt intercalation method of mixing was not achieved. POLYM. ENG. SCI., 54:175–188, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Fibrillar reinforced composites of polytetrafluoroethylene (PTFE) and polycarbonate (PC) were prepared by in situ fibrillation of PTFE into PC matrix using twin screw extruder. Different samples were obtained by varying the relative ratio between PC and PTFE. The rheological properties of the PC/PTFE composites were found to depend on concentration of the PTFE fibrils. The melt strength analysis in nonisothermal conditions was also studied. The increase in force and decrease in drawability with increasing the PTFE content are associated with the PTFE fibrils formed in situ during the thermomechanical process in twin screw extruder. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42401.  相似文献   

20.
Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax‐fabric‐reinforced SPI‐based composites were then arylated with 2,2‐diphenyl‐2‐hydroxyethanoic acid (DPHEAc) for 4 h to obtain arylated biocomposites. A new method was proposed to determine the amount of carbon dioxide evolved during the arylation of the soy protein in the presence of DPHEAc. Characterizations of the arylated and nonarylated biocomposites were done by Fourier transform infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical thermal analysis. The results indicate that the arylated soy‐protein‐based composites exhibited mechanical behavior like brittle‐matrix composites, which differentiated them from nonarylated soy‐protein‐based composites, which showed mechanical behavior similar to polymer–matrix composites. In the arylated composites, there was clear evidence of a stick–slip mechanism, which perhaps dominated and, therefore, prevented easy deformation of the reinforced film. Scanning electron microscopy studies revealed cracks in the arylated soy protein composites when they were subjected to tensile tests. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号