首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization, and thermal properties of copolymers of methyl methacrylate (MMA) and N‐(p‐carboxyphenyl) methacrylamide/acrylamide (CPMA/CPA) are described. The copolymerization was carried out in solution by taking different mole fractions (0.1–0.5) of CPMA/CPA in the initial feed using azobisisobutyronitrile as an initiator and dimethylformamide as a solvent at 60°C. The copolymer composition was determined from 1H‐NMR spectra by taking the ratio of the proton resonance signal due to the  OCH3 of MMA (δ = 3.59 ppm) and the aromatic protons (δ = 7.6–7.8 ppm) of CPMA/CPA. The monomer reactivity ratios of MMA:CPMA and MMA:CPA were determined using the Fineman Ross and Kelen Tudos methods and were found to be 1.32 ± 0.01 [MMA], 1.11 ± 0.02 [CPMA], 2.60 ± 0.01 [MMA], and 0.20 ± 0.01 [CPA]. Incorporation of these comonomers in the MMA backbone resulted in an improvement in the glass‐transition temperature and thermal stability. The percent char also increased with the increase of CPMA/CPA content in the copolymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 259–267, 2000  相似文献   

2.
The copolymers containing N‐vinyl‐2‐pyrrolidone (V) and methyl methacrylate (M) units of different compositions were synthesized by free radical bulk polymerization. The copolymer composition of these copolymers was determined by CHN analysis. The distortionless enhancement by polarization transfer (DEPT) technique was used to resolve the methine, methylene, and methyl resonance signals in the V/M copolymer. Comonomer reactivity ratios were determined by the Kelen–Tudos (KT) and nonlinear least‐square error‐in‐variable (EVM) methods. 1H–13C Heteronuclear shift quantum correlation spectroscopy (HSQC) and 1H–1H homonuclear total correlation spectroscopy (TOCSY) spectra were used for the resolution of the proton nuclear magnetic resonance (1H NMR) spectrum of the V/M copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1328–1336, 2002  相似文献   

3.
4‐Acetamidophenyl acrylate (APA) was synthesized and characterized by IR, 1H and 13C NMR spectroscopies. Homo‐ and copolymers of APA with acrylonitrile (AN) and N‐vinyl‐2‐pyrrolidone (NVP) were prepared by a free radical polymerization. All the copolymer compositions have been determined by 1H NMR technique, and the reactivity ratios of the monomer pairs have been evaluated using the linearization methods Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos. Nonlinear error‐in‐variable model (EVM) method was used to compare the reactivity ratios. The reactivity ratios for copoly(APA–AN) system were APA(r1) = 0.70 and AN(r2) = 0.333, and for copoly(APA–NVP) system the values were APA(r1) = 4.99 and NVP(r2) = 0.019. Thermal stability and molecular weights of the copolymers are reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1919–1927, 2006  相似文献   

4.
Free‐radical copolymerization of 4‐nitrophenyl acrylate (NPA) with n‐butyl methacrylate (BMA) was carried out using benzoyl peroxide as an initiator. Seven different mole ratios of NPA and BMA were chosen for this study. The copolymers were characterized by IR, 1H‐NMR, and 13C‐NMR spectral studies. The molecular weights of the copolymers were determined by gel permeation chromatography and the weight‐average (M w) and the number‐average (M n) molecular weights of these systems lie in the range of 4.3–5.3 × 104 and 2.6–3.0 × 104, respectively. The reactivity ratios of the monomers in the copolymer were evaluated by Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos methods. The product of r1, r2 lies in the range of 0.734–0.800, which suggests a random arrangement of monomers in the copolymer chain. Thermal decomposition of the polymers occurred in two stages in the temperature range of 165–505°C and the glass transition temperature (Tg) of one of the systems was 97.2°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1817–1824, 2003  相似文献   

5.
Copolymerizations of methyl methacrylate (MMA) with 4‐vinylpyridine (4VP) were performed from different monomer feed ratios in 1,4‐dioxan at 30°C under free radical initiation experimental conditions, using Ni(II)α‐Benzoinoxime complex as initiator. The obtained copolymers (PMMA4VP) were examined by FTIR and 1H NMR spectroscopies. The composition of these copolymers was calculated, using 1H NMR spectra and elemental analysis. Monomer reactivity ratios were estimated from Fineman–Ross (FR, rm = 0.550, rv = 1.165) and Kelen–Tudos (KT, rm = 0.559, rv = 1.286) linearization methods, as well as nonlinear error in variables model (EVM) method using the RREVM computer program (RREVM, rm = 0.559, rv = 1.264). These values suggest that MMA‐4VP pair copolymerizes randomly. 1H NMR spectra provide information about the stereochemistry of the copolymers in terms of sequence distributions and configurations. These results showed that the age of the Ni complex has an impact not only on its activity towards polymerization reactions but also on the features of the corresponding copolymers, whereas the chemical composition was insensitive to this prominent factor. The mechanism of MMA‐4VP copolymerization is consistent with a radical process as supported by microstructure and molecular weight distribution studies. Thermal behaviours of these copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
Free‐radical polymerization of p‐cumyl phenyl methacrylate (CPMA) was performed in benzene using bezoyl peroxide as an initiator at 80°C. The effect of time on the molecular weight was studied. Functional copolymers of CPMA and glycidyl methacrylate (GMA) with different feed ratios were synthesized by free‐radical polymerization in methyl ethyl ketone at 70°C, and they were characterized by FTIR and 1H‐NMR spectroscopy. The molecular weights and polydispersity indexes of the polymers and copolymers were determined by gel permeation chromatography. The copolymer composition was determined by 1H‐NMR. The glass‐transition temperature of the polymer and the copolymers was determined by differential scanning calorimetry. The reactivity ratios of the monomers were determined by the Fineman–Ross and Kelen–Tudos methods. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 336–347, 2005  相似文献   

7.
In this study, methyl oleate was bromoacrylated in the presence of N‐bromosuccinimide and acrylic acid in one step. Homopolymers and copolymers of bromoacrylated methyl oleate (BAMO) were synthesized by free radical bulk polymerization and photopolymerization techniques. Azobisisobutyronitrile (AIBN) and 2,2‐dimethoxy‐2‐phenyl‐acetophenone were used as initiators. The new monomer BAMO was characterized by FTIR, GC‐MS, 1H, and 13C‐NMR spectroscopy. Styrene (STY), methylmethacrylate (MMA), and vinyl acetate (VA) were used for copolymerization. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR, and differential scanning calorimetry (DSC). Molecular weight and polydispersities of the copolymers were determined by GPC analysis. Ten different feed ratios of the monomers STY and BAMO were used for the calculation of reactivity ratios. The reactivity ratios were determined by the Fineman–Ross and Kelen–Tudos methods using 1H‐NMR spectroscopic data. The reactivity ratios were found to be rsty = 0.891 (Fineman–Ross method), 0.859 (Kelen–Tudos method); rbamo = 0.671 (Fineman–Ross method), 0.524 (Kelen–Tudos method). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2475–2488, 2004  相似文献   

8.
4‐Vinyl pyridine–methacrylonitrile (V/M) copolymers of different composition were prepared by bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition was determined from quantitative 13C{1H}‐NMR spectra. The reactivity ratios for V/M copolymer obtained from a linear Kelen‐Tudos method (KT) and nonlinear error‐in‐variables method (EVM) are rV = 0.79 ± 0.12, rM = 0.38 ± 0.09 and rV = 0.79 ± 0.13, rM = 0.38 ± 0.07, respectively. The complete spectral assignment in term of compositional and configurational sequences of these copolymers were done with the help of distortionless enhancement by polarization transfer (DEPT), two‐dimensional heteronuclear single quantum coherence spectroscopy (HSQC). Total correlated spectroscopy (TOCSY) experiment was used to assign the various three‐bond 1H‐1H couplings in the V/M copolymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3232–3238, 2003  相似文献   

9.
The aim of this investigation was the copolymerization of a chiral monomer, (R)‐N‐(1‐phenylethyl) methacrylamide, with an achiral monomer, 2‐hydroxyethyl methacrylate (HEMA). The copolymerization characteristics as well as the chiroptical properties (optical rotation and circular dichroism) and their variation with copolymer composition and temperature are discussed. The copolymers are statistical and enriched in HEMA. The monomer reactivity ratio of the chiral monomer (r1) is 0.133 whereas that of HEMA (r2) is 1.042 based on the Kelen–Tudos method. The sequence of consecutive chiral monomer units predominates for a feed composition between 0.5 and 0.9 (mole fraction). On the other hand, the sequence of HEMA is uniform and it predominates for a feed composition of around 0.5 (mole fraction). The chiroptical properties of the copolymers do not vary linearly with the content of chiral units in the copolymers. The optical rotation and circular dichroism attain optimum values above 30–40 mol% of chiral monomer units in the copolymers. However, the circular dichroism of the copolymers varies linearly with the temperature. The chiral monomer being a more bulky structure is less reactive than HEMA. The nonlinear variation of chiroptical properties of the copolymers with the content of chiral units may be due to the secondary interaction in the copolymers associated with the hydrogen bonding involving the amide linkage (CONH) present in the pendant chromophore of the chiral monomer as well as the hydroxyl pendant group of HEMA and also the aromatic π–π interaction. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
2,5‐ Dichlorophenyl acrylate (DPA)‐co‐glycidyl methacrylate (GMA) polymers having five different compositions were synthesized in 1,4‐dioxane using benzoyl peroxide as a free‐radical initiator at 70 ± 0.5°C. Using 1H‐NMR spectroscopy, the composition of the two monomers in the copolymers was calculated by comparing the integral values of the aromatic and aliphatic proton peaks. The reactivity ratios were calculated by Fineman–Ross (r1 = 0.31 and r2 = 1.08), Kelen–Tudos (r1 = 0.40 and r2 = 1.15), and extended Kelen–Tudos (r1 = 0.39 and r2 = 1.16) methods. The nonlinear error‐in‐variables model was used to compare the reactivity ratios. The copolymers were characterized by 1H and proton decoupled 13C‐NMR spectroscopes. Gel permeation chromatography was performed for estimating the Mw and Mn and Mw/Mn of the poly(DPA) and copolymers (DPA‐co‐GMA: 09 : 91 and 50 : 50). Thermal stability of the homo‐ and copolymers was estimated using TGA [poly(DPA) > DPA‐co‐GMA (50 : 50) > DPA‐co‐GMA (09:91)], while DSC was utilized for determining the glass transition temperature. Tg increased with increased DPA content in the copolymer. The 50 : 50 mol % copolymer was chosen for curing with diethanolamine in chloroform. The cured resins were tested for the adhesive properties on leather at different temperatures (50, 90, 100, and 110°C). The resin cured at 50 °C exhibited a maximum peel strength of 1.6 N/mm, revealing a good adhesive behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1167–1174, 2006  相似文献   

11.
The microstructure of trans‐4‐methacryloyloxyazobenzene–methyl methacrylate copolymers prepared by solution polymerization process using AIBN as initiator is analyzed by one‐and two‐dimensional spectroscopy. Sequence distribution was calculated from the 13C(1H)‐NMR spectra of the copolymers. Comonomer reactivity ratios were determined using the Kelen–Tudos and the nonlinear error‐in‐variables methods are rA = 1.14 ± 0.08 and rM = 0.51 ± 0.03; rA = 1.13 ± 0.1 and rM = 0.50 ± 0.04, respectively. The sequence distribution of A‐ and M‐centered triads determined from 13C(1H)‐NMR spectra of copolymer is in good agreement with triad concentration calculated from a statistical model. The 2‐D heteronuclear single‐quantum correlation and correlated spectroscopy (TOCSY) was used to analyze the complex 1H‐NMR spectrum. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3016–3025, 1999  相似文献   

12.
N‐Vinyl‐2‐pyrrolidone (V) and vinyl acetate (A) copolymers of different compositions were synthesized by free radical bulk polymerization. The copolymer composition of these copolymers was determined using quantitative 13C{1H} NMR spectra. The reactivity ratios for these comonomers were determined using the Kelen–Tudos (KT) and non‐linear least‐square error‐in‐variable (EVM) methods. The reactivity ratios calculated from the KT and EVM methods are rV = 2.86 ± 0.16, rA = 0.36 ± 0.09 and rV = 2.56, rA = 0.33, respectively. 1H, 13C{1H} and 1H–13C heteronuclear shift correlation spectroscopy (HSQC) and 1H–1H homonuclear total correlation spectroscopy (TOCSY) were used for the compositional and configurational assignments of V/A copolymers. The 13C distortionless enhancement by polarization transfer (DEPT) technique was used to resolve the methine, methylene and methyl resonance signals in the V/A copolymers. © 2002 Society of Chemical Industry  相似文献   

13.
A comparative study on photoinitiated solution copolymerization of n‐butylacrylate (BA) with styrene (Sty) using pyrene (Py), 1‐acetylpyrene (AP), and 1‐(bromoacetyl)pyrene (BP) as initiators showed that the introduction of a chromophoric moiety, bromoacetyl (? COCH2Br), significantly increased the photoinitiating ability of pyrene. The kinetics and mechanism of copolymerization of BA with Sty using BP as photoinitiator have been studied in detail. The system follows nonideal kinetics (Rp ∝ [BP]0.34 [BA]1.07 [Sty]0.97). The nonideality was attributed to both primary radical termination and degradative initiator transfer. The monomer reactivity ratios of Sty and BA have been estimated by the Finemann–Ross and Kelen–Tudos methods, by analyzing copolymer compositions determined by 1H NMR spectra. The values of r1 (Sty) and r2 (BA) were found to be 0.78 and 0.25, respectively, which suggested the high concentration of alternating sequences in the random copolymers obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3233–3239, 2006  相似文献   

14.
Methacrylonitrile–vinylidene chloride (M/V) copolymers of different composition were prepared by bulk polymerization using benzoyl peroxide as an initiator under nitrogen atmosphere in a sealed tube. The copolymer composition was determined from quantitative 13C[1H] NMR spectra. The reactivity ratios for M/V copolymers obtained from a linear Kelen–Tudos method and nonlinear error‐in‐variables method are rM = 2.47 ± 0.14, rV = 0.40 ± 0.02, and rM = 2.43, rV = 0.39, respectively. The complete spectral assignment in term of compositional and conformational sequences of these copolymers were done with the help of distortionless enhancement by polarization transfer, two‐dimensional heteronuclear single‐quantum coherence spectroscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1865–1874, 2005  相似文献   

15.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

16.
Copolymers of N‐acryloylcarbazole (A) and vinyl acetate (V) were synthesized by bulk polymerization using benzoyl peroxide (BPO) as free‐radical initiator at 65°C in different in‐feed ratios. The composition of the copolymer was determined by 1H‐NMR spectrum. The comonomer reactivity ratios, determined by Kelen–Tudos (KT) and nonlinear error‐in‐variables (EVM) methods, were rA= 16.75 ± 1.38, rV = 0.015 ± 0.002, and rA = 16.36, rV = 0.015, respectively. Complete spectral assignments of the 1H and 13C{1H} NMR spectra of the copolymers were done by the help of distortionless enhancement by polarization transfer (DEPT) and two‐dimensional NMR techniques such as heteronuclear single quantum coherence (HSQC) and total correlation spectroscopy (TOCSY). The methine and methylene carbon resonances were found to be compositional as well as configurational sensitive. The signals obtained were broad pertaining to the restricted rotation of bulky carbazole group. The thermal stability and glass‐transition temperatures (Tg) of the copolymers were found to be dependant on polymer composition and characteristic of rotational rigidity of the polymer chain. Variation in the values of Tg with the copolymer composition was found to be in good agreement with theoretical values obtained from Johnston and Barton equations. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2720–2733, 2007  相似文献   

17.
Copolymers of N‐vinyl‐2‐pyrrolidone (V) and glycidyl methacrylate (G) monomers of different compositions were prepared by free‐radical solution polymerization. The copolymer composition of these copolymers was determined with 1H‐NMR spectra. The reactivity ratios calculated from the Kelen–Tudos and nonlinear least‐square error‐in‐variable methods were rV = 0.03 ± 0.01 and rG = 5.05 ± 0.84 and rV = 0.02 and rG = 4.72, respectively. The triad sequence distribution in terms of V and G centered triads was determined from 13C{1H}‐NMR spectroscopy. The complete spectral assignment of 13C{1H}‐ and 1H‐NMR spectra was performed with the help of distortionless enhancement by polarization transfer and two‐dimensional 13C–1H heteronuclear single quantum coherence. The 1H–1H couplings were explained with total correlation spectroscopy and nuclear Overhauser enhancement spectroscopy spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 50–60, 2002; DOI 10.1002/app.10186  相似文献   

18.
The sorption properties of toluene vapor were measured for methyl methacrylate (MMA)‐co‐chloromethyl styrene (CMSt) copolymers chemically modified with N,N‐dimethyl‐1,3‐propanediamine (DMPDA) to develop a novel quartz crystal microbalance toluene‐vapor sensor coating. The influence of the structure of the comonomer, the composition of the copolymer, and the film thickness on the toluene sorption properties were investigated. The modified MMA–CMSt copolymers were capable of large, fast, and reversible sorption versus the modified styrene–CMSt copolymers. The largest sorption capacity was obtained for MMA–CMSt–DMPDA with a 96 mol % CMSt concentration. These behaviors were explained by a combination of the plasticization of the copolymers by the introduction of bulky DMPDA at lower CMSt concentrations and the formation of a loosely crosslinked structure at higher CMSt concentrations. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Copolymers of N‐vinylcarbazole and methyl methacrylate of different compositions were prepared by solution polymerization with azobisisobutyronitrile as an initiator, and their compositions were determined from quantitative 13C{1H}‐NMR spectroscopy. The reactivity ratios for the comonomers were calculated with the Kelen–Tudos and nonlinear error‐in‐variable methods. The complete spectral assignment of the overlapping 1H and 13C{1H} spectra of the copolymers was made with the help of distortionless enhancement by polarization transfer, two‐dimensional heteronuclear single‐quantum correlation, and total correlation spectroscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3005–3012, 2003  相似文献   

20.
Copolymers containing acrylamide (A) and acrylonitrile (B) units of different compositions were synthesized by free‐radical solution polymerization. The reactivity ratios were estimated by the Kelen Tudos and nonlinear error‐in‐variable methods. The triad sequence distribution in terms of A‐ and B‐centered triads were obtained from 13C{1H}‐NMR spectroscopy. The complete spectral assignments in terms of compositional and configurational sequences of the overlapping carbon and proton spectra of these copolymers were done using distortionless enhancement by polarization transfer (DEPT), two‐dimensional proton‐detected heteronuclear correlation (inverse‐HETCOR), and total correlated spectroscopy (TOCSY) experiments. The Monte Carlo simulation was used to study the effect of the fractional conversion on the triad fractions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 55–67, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号