首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry  相似文献   

2.
CO2 sorption and diffusion in poly(3‐hydroxybutyrate) and three poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) copolymers were investigated gravimetrically at temperatures from 25° to 50°C and pressures up to 1 atm. The sorption behavior proved to be linear for all the copolymers studied. An additional set of measurements performed in a pressure decay apparatus at 35°C showed that the linearity could be extrapolated to pressures up to 25 atm. The sorption results obtained from both techniques were in good agreement. The poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) sorption kinetics were increasingly non‐Fickian at the higher temperatures, thus preventing the calculation of diffusion coefficients above 35°C. Interestingly, this was not the case for poly(3‐hydroxybutyrate), and diffusion coefficients and permeabilities could be calculated at all of the investigated temperatures. The 35°C permeabilities were fairly low, which is attributed to the high degree of crystallinity of this polyester family. Finally, the poly(3‐hydroxybutyrate) barrier properties against CO2 are successfully compared with those of some selected common thermoplastics. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2391–2399, 1999  相似文献   

3.
Novel copolyesteramides were synthesized by reacting trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with ε‐caprolactam (CLM) in the presence of stannous octoate [Sn(II) Oct.] as a catalyst. Various techniques, including 1H‐NMR, IR, DSC, and viscosity, were used to elucidate structural characteristics and thermal properties of the resulting copolymers. Data showed that the optimal reaction condition for the synthesis of the copolymers was obtained by using 3 wt % Sn(II) Oct. at 170°C for 24 h. The DSC analysis demonstrated amorphous structure for most of the copolymers. The glass‐transition temperature of the copolymers shifts to a higher temperature with increasing Hpr/CLM molar ratio. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐CLM)s was evaluated by weight loss measurements. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1615–1621, 2002  相似文献   

4.
Microphase separation behavior on the surfaces of poly(dimethylsiloxane)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PHFBMA) diblock copolymer coatings was investigated. The PDMS‐b‐PHFBMA diblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the copolymers was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Surface composition was studied by X‐ray photoelectron spectroscopy. Copolymer microstructure was investigated by atomic force microscopy. The microstructure observations show that well‐organized phase‐separated surfaces consist of hydrophobic domain from PDMS segments and more hydrophobic domain from PHFBMA segments in the copolymers. The increase in the PHFBMA content can strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. And the increase in the annealing temperature can also strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. Moreover, Flory‐Huggins thermodynamic theory was preliminarily used to explain the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

6.
The copolymers of (Z)‐4‐oxo‐4‐phenoxyl‐2‐butenoic acid with styrene (PSt/OPBA) and their macromolecular luminous lanthanide complexes (Ln‐PSt/OPBA) have been synthesized and characterized by means of GPC, elemental analysis, FTIR, X‐ray powder diffraction, spectral analysis, and thermal analysis. The IR studies showed that the carboxylic groups on the side chain of the polymer were coordinated to lanthanide ions by bidentate manner. However, the ethereal oxygen, instead of carbonyl, also bonded to the central lanthanide ions, which was an intriguing phenomenon for ester‐coordinated complexes. X‐ray diffraction experiments revealed that these PSt/OPBA copolymers were amorphous, but Ln‐PSt/OPBA were crystalline, in which the complex Eu‐Lc belonged to a high symmetric structure of orthorhombic quadratic system, with a = 10.59 ± 0.02 Å, c = 8.02 ± 0.01 Å; c/a = 0.763. In addition, the value δ (the number of free carboxylic groups) in Ln‐PSt/OPBA complexes increased with the decreasing mole ratio of styrene in the copolymers, while it decreased with increasing pH values of the solution. Eu3+ and Tb3+ complexes exhibited characteristic fluorescence with comparatively high brightness and good monochromaticity, and the fluorescence intensity was enhanced with increasing the content of lanthanide up to around 18 wt % without typical fluorescence concentration quenching behavior in the solid state. So using polymers as a matrix, Ln‐PSt/OPBA are likely to provide new materials that possess specific properties and desired features. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

8.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Hydrophobically modified water‐soluble polymers have been prepared by copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and isodecyl methacrylate (iDMA) in N,N‐dimethylformamide under nitrogen atmosphere, varying the composition feed. Fluorescence spectroscopy was used to further confirm the copolymers self‐aggregate in water. Critical concentration of the self‐aggregate formation (CAC) decreased by increasing the molar fraction of iDMA in the AMPSco copolymers and varied between 1.20 and 0.04 g/L depending on the degree of hydrophobic modification. Hence, copolymer composition and charge density allowed tuning the pseudomicellar characteristics of these new amphiphilic copolymers. The addition of a salt or a low‐molecular‐weight surfactant was studied. Binding of CTAB to the AMPSco copolymers leads to a high decrease of CAC, i.e., 0.006 g/L. Effect of the composition in the viscosimetric behavior of the hydrophobically modified copolymers AMPSco was investigated. The removal of single metal ions, Cu2+, and m‐cresol from aqueous solutions by ultrafiltration with the help of the copolymers was investigated. Equilibrium dialysis experiments demonstrate that the formation of hydrophobic microdomains can be used to control the sequestration of foulants, and thus these novel copolymers have potential application as polymeric surfactants in micellar‐enhanced ultrafiltration processes for water purification. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Biodegradable copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and styrene (ST) were synthesized by free‐radical copolymerization using di‐t‐butyl peroxide (DTBP) as the initiator. The copolymers containing ester units were characterized by Fourier transform infrared (FTIR), 1H‐NMR, and 13C‐NMR spectroscopy. Their molecular weight and polydispersity index were determined by gel permeation chromatography (GPC). In vitro enzymatic degradation of poly(MDO‐co‐ST) was performed at 37°C in phosphate buffer solution (PBS, pH = 7.4) in the presence of Pseudomonas lipase or crude enzyme extracted from earthworm. The experiment showed that incorporating ester units into C? C backbone chain of polystyrene would result in a biodegradable copolymer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1146–1151, 2007  相似文献   

11.
Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid), poly(methacrylic acid), and five copolymers of poly[(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐co‐(methacrylic acid)] were synthesized by radical polymerization and obtained in yields >97%. The polymers were characterized by FT‐IR, [1H]NMR, and [13C]NMR and studied by means of the Liquid‐phase Polymer‐based Retention (LPR) technique. The metal ion retention ability of the copolymers for Cu(II), Cd(II), Co(II), Hg(II), Ni(II), Zn(II), Cr(III) and Ag(I) was investigated at different pH values because of their environmental and analytical interest. The retention profiles of the copolymers were compared with those of the corresponding homopolymers and retention of metal ions was found to increase with increasing pH. © 2001 Society of Chemical Industry  相似文献   

12.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Hybrid block copolymers find applications in drug delivery, tissue engineering, biomimetics and bioimaging, amongst others, mainly due to their propensity to form phase‐separated microdomains as well as to the aggregation of their polypeptide segments. They not only enhance control over structure at the nanometre scale but also yield materials that can interface with various biosystems for different utilities. α‐Methoxy‐poly(ethylene glycol)‐block‐poly[?‐(benzyloxycarbonyl)‐l ‐lysine] hybrid block copolymers of varying degrees of polymerization, MPEGn‐b‐PLL(Z)m, were synthesized by N‐carboxyanhydride ring‐opening polymerization and characterized using infrared and NMR spectroscopy and gel permeation chromatography. Their secondary structures and bulk conformations were investigated using circular dichroism spectroscopy and wide‐angle X‐ray diffraction, respectively, whereas thermogravimetric analysis (TGA), derivative TGA and differential scanning calorimetry were employed for thermal analyses. The resulting block copolymers exhibited microphase separation and suppressed degrees of crystallinity with increasing l ‐lysine content and adopted α‐helix and β‐sheet secondary structures in aqueous milieu. The copolymers were also more thermally stable than their constituent homopolymers. Interestingly, the effects of the retention of the N?‐benzyloxycarbonyl moiety on polymer properties proved considerable. The hybrid block copolymers herein afforded hierarchical structures of potential utility in the biomedical and pharmaceutical fields. © 2012 Society of Chemical Industry  相似文献   

14.
A series of poly(5,5‐dimethyl‐1,3‐dioxan‐2‐one)‐block‐methoxy poly(ethylene glycol) (PDTC‐b‐mPEG) copolymers were synthesized by the ring‐opening polymerization of 5,5‐dimethyl‐1,3‐dioxan‐2‐one (DTC) in bulk, using methoxy poly(ethylene glycol) (mPEG) as initiator without adding any catalysts. The resulting copolymers were characterized by Fourier transform infrared spectra, 1H NMR and gel permeation chromatography. The influences of some factors such as the DTC/mPEG molar feed ratio, reaction time and reaction temperature on the copolymerization were investigated. The experimental results showed that mPEG could effectively initiate the ring‐opening polymerization of DTC in the absence of catalyst, and that the copolymerization conditions had a significant effect on the molecular weight of PDTC‐b‐mPEG copolymer. In vitro drug release study demonstrated that the amount of indomethacin released from PDTC‐b‐mPEG copolymer decreased with increase in the DTC content in the copolymer. © 2013 Society of Chemical Industry  相似文献   

15.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

17.
This paper describes the synthesis of a series of ABA‐type triblock copolymers of trimethylene carbonate and ?‐caprolactone with various molar ratios and analyses the thermal and mechanical properties of the resulting copolymers. The structures of the triblock copolymers were characterized by 1H and 13C nuclear magnetic resonance spectroscopy, FT‐IR spectroscopy and gel permeation chromatography. Results obtained from the various characterization methods proves the successful synthesis of block copolymers of trimethylene carbonate and ?‐caprolactone. The thermal properties of the block copolymers were investigated by differential scanning calorimetry. The Tm and ΔHm values of the copolymers decrease with increasing content of trimethylene carbonate units. Two Tgs were found in the copolymers. Furthermore, both of the Tg values increased with increasing content of trimethylene carbonate units. The mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the mechanical properties of the block copolymers are related to the molar ratio of trimethylene carbonate and ?‐caprolactone in the copolymers, as well as the molecular weights of the resulting copolymers. The block copolymer with a molar composition of 50/50 possessed the highest tensile stress at maximum and modulus of elasticity. Block copolymers possessing different properties could be obtained by adjusting the copolymer compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
Amphiphilic block comb‐shaped copolymers, poly[poly(ethylene oxide) methyl ether acrylate]‐block‐polystyrene [P(A‐MPEO)‐block‐PSt] with PSt as a handle, were successfully synthesized via a macromonomer technique. The reaction of MPEO with acryloyl chloride yielded a macromonomer, A‐MPEO. The macroinitiator PSt capped with the dithiobenzoate group (PSt‐SC(S)Ph) was prepared by reversible addition–fragmentation transfer (RAFT) polymerization of styrene in the presence of benzyl dithiobenzoate, and used as macroinitiator in the controlled radical block copolymerization of A‐MPEO at room temperature under 60Co irradiation. After the unreacted macromonomer A‐MPEO had been removed by washing with hot saturated saline water, block comb‐shaped copolymers were obtained. Their structure was characterized by 1H NMR spectroscopy and gel permeation chromatography. The phase transition and self‐assembling behaviour were investigated by atomic force microscope and differential scanning calorimetry. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
In this study, amphiphilic poly(ε‐caprolactone)–pluronic–poly(ε‐caprolactone) (PCL–pluronic–PCL, PCFC) copolymers were synthesized by ring‐opening copolymerization and then reacted with isophorone diisocyanate to form polyurethane (PU) copolymers. The molecular weight of the PU copolymers was measured by gel permeation chromatography, and the chemical structure was analyzed by 1H‐nuclear magnetic resonance and Fourier transform infrared spectra. Then, the PU copolymers were processed into fibrous scaffolds by the electrospinning technology. The morphology, surface wettability, mechanical strength, and cytotoxicity of the obtained PU fibrous mats were investigated by scanning electron microscopy, water contact angle analysis, tensile test, and MTT analysis. The results show that the molecular weights of PCFC and PU copolymers significantly affected the physicochemical properties of electrospun PU nanofibers. Moreover, their good in vitro biocompatibility showed that the as‐prepared PU nanofibers have great potential for applications in tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43643.  相似文献   

20.
New copolymer materials have been prepared by chemical grafting of oligomeric 3‐hydroxybutyric acid (OHB) onto polypyrrole (PPy) derivatives. The influence of grafting density and molecular weight of OHB brushes on the physicochemical properties of prepared copolymers was investigated. PPy substrates were prepared by FeCl3‐driven oxidative homopolymerization of N‐(2‐carboxyethyl)pyrrole or its copolymerization with pyrrole. The grafting method employed involved controlled anionic polymerization of β‐butyrolactone on pyrrole‐tethered potassium carboxylate active sites. Obtained PPy‐g‐OHB copolymers of varying grafting density and pendant polyester chain length were characterized and the observed structure–property relationships discussed. The impact of real time exposure to phosphate‐buffered saline environment was investigated and the residue products were characterized. Cross‐correlation of spectroscopic, thermal, electrical and elemental analysis data afforded comprehensive evaluation of the structure of prepared materials and their behaviour in hydrolytic medium. Erosion and degradation pathways have been identified, indicating ways to consciously tailor the physicochemical properties of these new biomimetic materials. © 2016 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号