首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiphase TRIP steels are a relatively new class of steels exhibiting excellent combinations of strength and cold formability, a fact that renders them particularly attractive for automotive applications. The present work reports models regarding the prediction of the stability of retained austenite, the optimisation of the heat‐treatment stages necessary for austenite stabilization in the microstructure, as well as the mechanical behaviour of these steels under deformation. Austenite stability against mechanically‐induced transformation to martensite depends on chemical composition, austenite particle size, strength of the matrix and stress state. The stability of retained austenite is characterized by the MσS temperature, which can be expressed as a function of the aforementioned parameters by an appropriate model presented in this work. Besides stability, the mechanical behaviour of TRIP steels also depends on the amount of retained austenite present in the microstructure. This amount is determined by the combinations of temperature and temporal duration of the heat‐treatment stages undergone by the steel. Maximum amounts of retained austenite require optimisation of the heat‐treatment conditions. A physical model is presented in this work, which is based on the interactions between bainite and austenite during the heat‐treatment of multiphase TRIP steels, and which allows for the selection of treatment conditions leading to the maximization of retained austenite in the final microstructure. Finally, a constitutive micromechanical model is presented, which describes the mechanical behaviour of multiphase TRIP steels under deformation, taking into account the different plastic behaviour of the individual phases, as well as the evolution of the microstructure itself during plastic deformation. This constitutive micromechanical model is subsequently used for the calculation of forming limit diagrams (FLD) for these complex steels, an issue of great practical importance for the optimisation of stretch‐forming and deep‐drawing operations.  相似文献   

2.
A material model is presented that accounts for strain rate dependent inelastic deformation and strain‐induced phase transformation in TRIP‐steels. Modifications for the kinetics equations of the strain‐induced phase transformation, introduced by Stringfellow, are proposed to overcome a drawback of Stringfellow's model. A parameter identification strategy that relies on Gauss‐Markov estimates is used to determine the model parameters from experimental data of a recently developed cast TRIP‐steel. Good agreement is observed between experimental results of the compression test and the corresponding finite element simulation employing the proposed model. This forms the basis for future applications of the material model in the design of composites and structures.  相似文献   

3.
A considerable research effort has been done in the field of cold rolled TRIP steels submitted to a two‐step annealing cycle. After annealing, these steels contain retained austenite, which offers them superior mechanical properties required for specific applications in automotive industry. In the present work, a physically based microstructural model has been applied to describe the static stress‐strain behaviour of phosphorus alloyed TRIP steel. The impact of the TiC precipitation on the static stress‐strain behaviour for a Ti micro‐alloyed TRIP steel was simulated. The model calculations were compared with experimental stress‐strain curves. An excellent agreement between simulation and experimental data was demonstrated.  相似文献   

4.
Advanced high‐strength steels, like dual phase and TRIP steels, have gained much interest for automotive application. The complex microstructures in dual phase steels, and even more critical, the metastable microstructure in TRIP steels, do not follow the well‐established traditional microstructure‐property relationships for deep drawing steels. The volume fraction of the different phases, the phase distribution, and the stability of metastable phases influence significantly the forming potential. This paper discusses the correlation between different microstructural features and the mechanical properties. The tensile test properties of dual phase steels are governed by the martensite volume fraction, the martensite hardness and to a much smaller extent the martensite island diameter. Both in dual phase and more pronounced in TRIP steels the retained austenite content plays a vital role in determining the formability. The stability of the retained austenite can be described by different methods, it needs to be adjusted according to the forming temperature and the type and amount of strain. In general, multiphase steels require a very strict microstructure control in order to develop predictable forming behaviour.  相似文献   

5.
The stress‐strain response of TRIP 700 and DP 600 steels was studied at a wide range of strain rates and temperatures using a special high/low temperature tensile Hopkinson Split Bar (THSB) device. The mechanical properties of the studied steels, especially of the TRIP steel, were found to be strongly affected by both temperature and strain rate. The beneficial TRIP effect in the studied steel reached its maximum at temperatures between 75‐150 °C. The transformation behaviour of the retained austenite in the TRIP steel was studied by XRD, revealing that the phase transformation rate increases with decreasing temperature and decreases with increasing strain rate. A phenomenological numerical model was also presented to describe the behaviour of the TRIP and DP steels at different temperatures and strain rates.  相似文献   

6.
The main objective of this paper is the development of a rheological model for automotive steels for the conditions of hot strip rolling and implementation of this model in a finite element program is. Three types of steels were investigated, IF, dual phase and TRIP steel. Plastometric tests were performed on a Gleeble 3800 simulator for the temperature range 850‐1200°C and strain rates 3‐150 s?1. Inverse analysis was applied to eliminate the influence of disturbances occurring in the plastometric tests and to determine the real flow stress of the material. The coefficients in the flow stress equation were evaluated and this equation was implemented in the FEM code as the constitutive law. The model was validated by comparison of measured and calculated loads in the compression tests and by strip rolling experiments conducted in the laboratory mill. Validation confirmed a good predictive capability of the rheological model.  相似文献   

7.
The dynamic testing of high strength automotive steel grades is of great practical importance if their crash‐worthiness is to be evaluated. During forming operations, steels are processed in a controlled dynamic manner. In collisions, the deformation is different in the sense that the deformation is not controlled, i.e. both strain and strain rate are not pre‐determined. No clear standard testing procedures are currently available to test high strength steels dynamically, in order to evaluate their performance during car crashes. High tensile strength TRIP‐aided steels have been developed by the steel industry because of their promising high strain rate performance. The present contribution focuses on the effect of the strain rate and temperature on the mechanical behaviour of the low alloy high strength TRIP steel. The tests were carried out on the separated phases in order to determine their specific high strain rate deformation response. The temperature‐dependence of the transformation rate of the retained austenite is presented. It is argued that the adiabatic conditions present during high strain rate deformations have a beneficial effect on the behaviour of TRIP steel.  相似文献   

8.
A simple homogenization scheme for multiphase microstructure (composite) is developed. This scheme is based on the classical Taylor (iso‐strain‐rate) averaging scheme. Scalar multipliers are introduced as weighting parameters in order to relax the condition of uniform strain distribution used in the classical Taylor scheme. In the present work, the scalar weighting parameters are determined by satisfying the iso‐work‐rate condition, i.e., work is equally distributed in all constituent phases. In combination with micromechanical models developed for transformation‐induced plasticity (TRIP) effect, the iso‐work‐rate weighted‐Taylor scheme is applied for simulating the effective mechanical behaviour of multiphase TRIP‐assisted steel. The predictions of the iso‐work‐rate weighted‐Taylor scheme are compared with the result of the corresponding simulation with the direct finite‐element method (FEM).  相似文献   

9.
Based on n‐value differential equation and microstructural observation, strain hardening behaviors of FBDP, TRIP, and TWIP steels during uniaxial tension were investigated. TRIP steel exhibits both superior strength and ductility than FBDP steel, and TWIP steel displays much higher total and uniform elongations in comparison to FBDP and TRIP steels. The instantaneous n values of FBDP and TRIP steels increase at small strains, reach a maximum value, smoothly decrease at higher strains, and then rapidly drop up to the specimen rupture. The strain hardening of TRIP steel persists at higher strains where that of FBDP steel begins to diminish. TWIP steel exhibits gradually increased instantaneous n values over the whole uniform plastic deformation, implying that TWIP steel shows a much larger strain hardening capability than FBDP and TRIP steels.  相似文献   

10.
Compared to other advanced high-strength steels, transformation-induced plasticity (TRIP) steels exhibit better ductility at a given strength level and can be used to produce complicated automotive parts. This enhanced formability comes from the transformation of retained austenite to martensite during plastic deformation. In this study, as a first step in predicting optimum processing parameters in TRIP steel productions, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. The method uses a microstructure-based representative volume element (RVE) to capture the complex deformation behavior of TRIP steels. The mechanical properties of the constituent phases of the TRIP 800 steel and the fitting parameters describing the martensite transformation kinetics are determined using the synchrotron-based in-situ high-energy X-ray diffraction (HEXRD) experiments performed under a uniaxial tensile deformation. The experimental results suggest that the HEXRD technique provides a powerful tool for characterizing the phase transformation behavior and the microstress developed due to the phase-to-phase interaction of TRIP steels during deformation. The computational results suggest that the response of the RVE well represents the overall macroscopic behavior of the TRIP 800 steel under deformation. The methodology described in this study may be extended for studying the effects of the various processing parameters on the macroscopic behaviors of TRIP steels. This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.  相似文献   

11.
To obtain the superior strength‐ductility‐balance of TRIP‐grades, a special chemical composition in combination with well adapted processing parameters are a prerequisite. Despite of their excellent formability performance in terms of drawability as characterized by high n‐ and elongation values, compared to mild steels TRIP‐grades are challenging in the press and the body shops. The high strength level in combination with the high work hardening of TRIP‐grades result in higher levels of spring back compared to mild steels and higher press forces are required. Furthermore, a higher sensitivity to failure for sharp bending radii and a deterioration of the formability of punched edges is reported for TRIP‐grades. While spring back can only be minimized by advanced forming processes supported by new simulation techniques with improved ability to predict spring back, the sensitivity to failure under special forming conditions can be influenced by optimizing microstructural features. Contrary to the forming behaviour, which is influenced significantly by the microstructure, the weldability is mainly governed by the chemical composition and the surface condition of the material. The high carbon content of TRIP‐grades compared to mild steels results in a higher hardening potential after welding. Additionally, a fracture behaviour untypical for mild steels after destructive testing of spot welds is sometimes observed for TRIP‐grades, which is assessed critically by some OEMs. In this work, after a discussion of the processing conditions, possibilities are demonstrated to improve the forming behaviour by an optimization of the microstructure and the spot weldability by adapting the chemical composition of low‐alloyed TRIP grades. First very promising results for TRIP‐grades with a minimum tensile strength level of 700 MPa are discussed.  相似文献   

12.
TRIP sheet steels typically consist of ferrite, bainite, retained austenite, and martensite. The retained austenite is of particular importance because its deformation‐induced transformation to martensite contributes to excellent combinations of strength and ductility. While information is available regarding austenite response in uniaxial tension, less information is available for TRIP steels with respect to the forming response of retained austenite in complex strain states. Therefore, the purpose of this work was to study the austenite transformation behaviour in different strain paths by determining the amount of retained austenite before and after forming. Forming experiments were performed on a high strength 0.19C‐1.63Si‐1.59Mn TRIP sheet steel 1.2 mm in thickness in two different strain conditions, uniaxial tension (ε1 = ‐2ε2) and balanced biaxial stretching (ε1 = ε2). Specimens were formed to strains ranging from zero to approximately 0.2 effective (von Mises) strain. Specimens were tested both longitudinally and transverse to the rolling direction in uniaxial tension, and subtle mechanical property differences were found. The volume fraction of austenite, determined with X‐ray diffraction subsequent to forming, was found to decrease with increasing strain for both forming modes. Some modification in the crystallographic texture of the ferrite was observed with increasing strain, in specimens tested in the balanced biaxial stretch condition. This trend was not evident in the uniaxial tensile test results. Slight differences were found in the transformation behaviour of the austenite when formed in different strain conditions. More austenite transformed in specimens tested parallel to the rolling direction than transverse to the rolling direction in uniaxial tension. The amount of austenite transformed during biaxial stretching was determined to be greater than the amount transformed in uniaxial tension for specimens tested transverse to the rolling direction at an equivalent von Mises strain. The amount of austenite that transformed in biaxial tension, however, was comparable to the amount of austenite that transformed in specimens tested longitudinal to the rolling direction in uniaxial tension.  相似文献   

13.
The presence of ferrite/pearlite bands in dual phase and TRIP assisted steels is a consequence of microchemical segregation which causes mechanical properties anisotropy. Such inhomogeneous phase distribution produces a lowering of the mechanical properties such as fracture behaviour. This anisotropy is commonly not accounted in micromechanics computations which often assume a random distribution of phases in the solid. The present paper deals with an integral model for this undesirable band formation accounting for the solute segregation caused by solidification, microcomponent diffusion present in the austenitisation process, and the nucleation of the transformed phase in segregated regions. In the present work, the model was applied to two industrial grade dual phase steels and two TRIP assisted steels. The influence of such parameters on band formation is summarised in a number of “band prevention plots”, which are aimed at providing the optimum processing conditions for ferrite/pearlite band prevention.  相似文献   

14.
On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fiaction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.  相似文献   

15.
Recently various kinds of high-strength sheet steels have been developed to meet the requirements of the automotive industry such as passive safety, weight reduction and saving energy. Usually the main problem of high-strength steels is their inferior ductility. Multiphase steels however show a very good combination of strength and formability so that the applicable region of high-strength steels has been widely enlarged. Multiphase steels have been developed for various purposes because of their ability to tailor properties by adjusting the type, the amount, and the distribution of different phases. Especially new developed triple-phase steels which make use of the TRIP effect (transformation induced plasticity) can further improve formability as well as strength due to the transformation of retained austenite to martensite during the deformation. In this work the transformation behaviour and the mechanical properties of low alloyed TRIP steels were investigated. The influence of the annealing parameters on transformation behaviour and on the amount of retained austenite were determined. In addition the temperature dependence of the mechanical properties and the effect of testing speed on the formability were studied. The investigation was carried out on seven different TRIP steels with different chemical compositions, especially the influence of the microalloying element niobium was considered. For reasons of comparison various mild and high-strength steels were tested parallel to the TRIP steels. It was found that the investigated TRIP steels offer very attractive combinations of elongation and strength values. An interesting temperature dependence of the mechanical properties can be observed, in such a way that the elongation values of the TRIP steels possess a maximum between +50 and +100°C. Due to its effect on grain size and on precipitation behaviour the addition of niobium leads to higher strength values without a strong decrease in ductility. In general, the mechanical properties are strongly affected by the type and the distribution of the different phases. The most important parameters, however, to influence the mechanical behaviour are the amount and the stability of the retained austenite, which are mainly controlled by the heat treatment and the chemical composition.  相似文献   

16.
通过扩展Avrami相变动力学模型、开发线性混合热膨胀模型、应用有限元单胞法,考虑了相变诱导塑性(TRIP)、相变膨胀、热膨胀等机制,建立了热力耦合有限元单胞模型.用该模型研究了X65管线钢分别在0、±50、±100、±150、±200 MPa拉、压单轴外载作用下,以1℃/s的冷速从540℃冷却至480℃的控冷过程,标...  相似文献   

17.
The influence of the volume content and the interface properties of ZrO2 particles on the overall response of a TRIP steel‐ZrO2 composite is investigated. Materials with three different zirconia contents and two different interface types, perfectly bonded and non‐cohesive, respectively, were considered, which led to six composite variants. The calulations of the material responses were performed using representative volumes of the composites and the finite element analysis (FEA). Uniaxial loading as well as biaxial loading was applied to the representative volume elements in order to study the influence of different loading conditions on the phase transformation behaviour. The results indicate that the enrichment of the TRIP steel with zirconia particles leads to a significant strengthening effect in both uniaxial and biaxial loading provided the interface has cohesive properties. Regarding the non‐cohesive interface, a performance improvement could not be found compared to the pure TRIP steel because of the impossibility of transferring tensile stresses into the zirconia inclusions.  相似文献   

18.
The mechanical behavior and microstructure evolution during deformation of novel austenitic Cr–Mn–Ni as‐cast steels with varied Ni content were investigated at various temperatures using static tensile tests, optical microscopy, and the magnetic scale for the detection of ferromagnetic phase fraction. To summarize all knowledge about the deformation‐induced processes, the STT and DTT diagrams were developed for Cr–Mn–Ni steels. The diagrams illustrate the different deformation mechanisms depending on temperature and tension load, and quantify the elongation of the deformation mechanisms. The deformation‐induced ε‐ and α' martensite formation and twinning – the TRIP and TWIP effects – occur in the Cr–Mn–Ni steels depending on the chemical composition and temperature. The differences of deformation‐induced processes depend on thermodynamics and are confirmed by thermodynamic calculations. The nucleation threshold of γ → α′ transformation was determined for the investigated Cr–Mn–Ni steels.  相似文献   

19.
The effects of size and shape of austenite grains on the extraordinary hardening of steels with transformation induced plasticity (TRIP) have been studied. The deformation and transformation of austenite was followed by interrupted ex situ bending tests using electron backscatter diffraction (EBSD) in a scanning electron microscope (SEM). A finite element model (FEM) was used to relate the EBSD based results obtained in the bending experiments to the hardening behavior obtained from tensile experiments. The results are interpreted using a simple rule of mixture for stress partitioning and a short fiber reinforced composite model. It is found that both, the martensite transformation rate and the flow stress difference between austenite and martensite significantly influence the hardening rate. At the initial stage of deformation mainly larger grains deform, however, they do not reach the same strain level as the smaller grains because they transform into martensite at an early stage of deformation. A composite model was used to investigate the effect of grain shape on load partitioning. The results of the composite model show that higher stresses develop in more elongated grains. These grains tend to transform earlier as it is confirmed by the EBSD observations.  相似文献   

20.
The possibility of applying new high‐strength steels with excellent forming behaviour (TRIP, TWIP and LIP steels) in automotive manufacturing is a significant potential for improvement in the area of reducing weight while simultaneously increasing crash safety. The present work investigates endogenous inclusions in some high‐alloy TRIP and TWIP steels because the most stringent product requirements are tightly related to cleanness. The expected formation of inclusions is discussed based on thermodynamic observations made with ThermoCalc. The solidification conditions were varied in experiments with the so‐called SSCT (submerged split chill tensile) apparatus. Furthermore, different treatment times were set in order to investigate this influence on the inclusions. A catalogue of endogenous inclusions in these new steel grades is currently being created with the help of the automated SEM/EDX inclusion analysis system at voestalpine Stahl GmbH in Linz. Further studies will follow to systematically determine the interactions between steel, slag and refractory materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号