首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compatibilizing efficiency of three different compatibilizers on the thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends properties was investigated after compatibilizer's incorporation via melt‐mixing. The compatibilizers studied were as follows: poly‐ε‐caprolactone (PCL) of different molecular weight (Mw), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly (methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly (methyl methacrylate) (PB‐b‐PMMA). In our study, the effect of 5 wt % added compatibilizers on TPU/SAN blends morphology was examined. The transmission electron microscopy (TEM) was used to study the morphology at different length scales and to determine the compatibilizer's location. Investigations showed the different improvement of properties, because of the different incorporation of compatibilizers in the polymer blend. The morphology influence on the rheological behavior of compatibilized blends was investigated with a stress‐controlled rheometer (Rheometric Dynamic Stress Rheometer, SR‐500). Different compatibilization activity was found for different system. It was also found that compatibilization activity of added compatibilizer strongly depends on the comaptibilizer's Mw. Blends compatibilized with PCL showed superior properties as compared with the other examined blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2303–2316, 2006  相似文献   

2.
Block copolymers of polycarbonate‐b‐poly(methyl methacrylate) (PC‐b‐PMMA) and tetramethyl poly(carbonate)‐b‐poly(methyl methacrylate) (TMPC‐b‐PMMA) were examined as compatibilizers for blends of polycarbonate (PC) with styrene‐co‐acrylonitrile (SAN) copolymer. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) technique and an asymmetric double cantilever beam fracture test. The average diameter of dispersed particles and interfacial tension of the PC/SAN blends were reduced by adding compatibilizer to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing interfacial adhesion with compatibilizer. TMPC‐b‐PMMA copolymer was more effective than PC‐b‐PMMA copolymer as a compatibilizer for the PC/SAN blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2649–2656, 2003  相似文献   

3.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

4.
Block copolymers of polycarbonate (PC) and polymethylmethacrylate (PMMA), PCb‐PMMA, were examined as compatibilizers for blends of PC with styrene‐co‐acrylonitrile (SAN) copolymer. PC‐b‐PMMA was added to blends of PC with SAN containing various amounts of AN. The average diameter of the dispersed particles was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) test and an asymmetric double cantilever beam fracture test. The average particle size and interfacial tension of the PC/SAN blends reached a minimum value when the SAN copolymer contained about 24 wt% AN. A maximum in the adhesion energy was also observed at the same AN content. Interfacial tension and particle size were further reduced by adding PC‐b‐PMMA to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing the interfacial adhesion by the addition of PC‐b‐PMMA. The addition of PC‐b‐PMMA copolymer was more effective at improving the interfacial properties of PC/SAN blends than was varying the AN content of the SAN copolymers. The interfacial properties of the PC/SAN blends were optimized by adding a block copolymer and using an SAN copolymer that had minimum interaction energy with PC.  相似文献   

5.
Polymer blend of poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE) and poly(styrene‐co‐acrylonitrile) (SAN), which has broad commercial interest, has limited miscibility. A triblock terpolymer, polystyrene‐block‐polybutadiene‐block‐poly(methyl methacrylate) (SBM), is often used as compatibilizer to improve the miscibility of PPE/SAN. In this work, dissipative particle dynamics and molecular dynamics of Material Studio were used to study the essentials that influence miscibility of the blend systems, and then Flory–Huggins parameter χ, radial distribution function (RDF) and morphologies are analyzed. It shows that the blends with more content of styrene in SAN (above 90 wt%), whose mass percentage is 60%, are best miscible. For the systems of PPE/SAN added with SBM, the miscibility increases and then decreases with the increase of SBM content. A longer chain of styrene (S) in SBM leads to wrapped structure of PMMA by PB, wrapped by PS, resulting in decrease of the miscibility. From studies and simulation of χ and RDF, the best blend system for commercial and industrial use is the one with mass ratio of PPE/SAN/SBM 36/54/10, in which S content in SAN is above 90 wt%. For SBM, the ratio of chain length styrene (S)/butadiene (B) is lessthan 1, while B and M are the same in chain length. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
A. Adedeji  A. M. Jamieson 《Polymer》1993,34(24):5038-5047
The influence of enthalpic interactions on interfacial adhesion between immiscible polymer matrices and reinforcing block copolymer segments has been studied using the transmission electron microscopic (TEM) methodology of Creton et al. We examined the behaviour of four statistical styrene-acrylonitrile (SAN) copolymers, each having different acrylonitrile (AN) content, blended with polystyrene (PS) as the minor component, and reinforced by three poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers of differing molar masses, viz. 20000, 65000 and 680000 g mol−1. These observations were compared with similar experiments on poly(methyl methacrylate) (PMMA) blended with PS and reinforced by PMMA-b-PS. Emulsification was observed with all three PMMA-b-PS copolymers. Crazes were formed in the SAN matrices and a statistical evaluation of interfacial failures was performed on the discrete PS domains that lay within the crazes. For the two block copolymers of higher molar mass, optimal reinforcement of the interfaces was observed independent of the SAN composition. With the 20000 block copolymer, however, the pattern of the interfacial failure depended strongly on the SAN composition. Specifically, it was observed that the fraction of the discrete particles that suffered interfacial failure, and led to the creation of large voids in the crazes in these blends, increased with increased AN content of the SAN matrix. Thus, we found that the fraction of discrete PS particles that produce large voids in crazes of blends containing SAN33 is always higher than in blends containing SAN15, when reinforced with the 20000 PMMA-b-PS. We infer that the critical molar mass required of a mechanically reinforcing copolymer depends on the short-range (attractive and repulsive) interactions between the blend components in the interfacial region. The TEM method could not, however, distinguish between reinforced and neat PMMA/PS blends, all of which showed strong adhesion. This is attributed to the comparatively diffuse interface in the PMMA/PS system, a consequence of the relatively weak repulsion between these two polymers.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs) were introduced into poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile copolymer (SAN) blends by melt mixing in an asymmetric miniature mixer (APAM). A composition of 70 wt% of PMMA and 30 wt% of SAN was mixed to create a co‐continuous morphology. Transmission electron microscopy images of ultra‐microtomed samples (70 nm in thickness) showed selective localization of MWCNTs inside the percolated SAN phase. The occurrence of the double percolation phenomenon resulted in lower electrical percolation thresholds of PMMA/SAN/MWCNT blends molded at high temperatures. Dielectric spectroscopy indicated a higher electrical permittivity for samples that were compression molded at 260°C. Due to the higher affinity of MWCNTs to SAN, there was a migration of MWCNTs into the SAN phase during the melt processing. Conductivity measurements revealed a significant decrease in electrical percolation threshold (0.4 wt%) for PMMA70/SAN30 blends compared with MWCNT‐filled SAN and MWCNT‐filled PMMA (ca. 0.8 wt%). POLYM. COMPOS., 37:1523–1530, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Natural latex (NR) particles, modified with a hard shell of poly(methyl methacrylate) (PMMA) and with a substructure of PMMA (type "NR-M") or polystyrene (type "NR-SM"), were tested as compatibilizers in blends of polycarbonate (of bisphenol A, PC) and PMMA or PS. During melt blending, the modified NR particles were torn apart, from an original size of >0.5 μm down to ≅0.1 μm in diameter. Two different types of particle distribution were observed in the blends: in PC/PMMA/NR-M blends, the NR-M particles were dispersed in the PMMA phase, whereas, in PC/PS/NR-SM blends, the NR-SM particles formed interface layers between PC and PS phase domains. The latter blend morphology, distinguished by continuous rubbery interface layers of NR-SM, turned out to be mechanically excellent in injection-moulded parts. The poor impact strength of PC/PS was raised by an order of magnitude. The effect depends on the orientation in the injection-moulded test bars.  相似文献   

9.
Nanostructure formation in thermosets can allow the design of materials with interesting properties. The aim of this work was to obtain a nanostructured epoxy system by self‐assembly of an amphiphilic diblock copolymer in an unreacted epoxy/amine mixture followed by curing of the matrix. The copolymer employed was polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA). The thermoset system, formed by a diglycidyl ether of bisphenol A‐type epoxy resin and diaminodiphenylmethane hardener, was chosen to ensure the miscibility of most of the PMMA block until matrix gelation. Transparent materials with microphase‐separated domains were obtained for copolymer contents lower than 40 wt%. In systems containing 20 and 30 wt% block copolymer, the PS block formed spherical micelles or worm‐like structures before curing, which were stabilized through curing by the more compatible PMMA block phase. Nanostructured thermoset systems were successfully synthesized for self‐assembled amphiphilic block copolymer–epoxy/amine mixtures for copolymer contents lower than 40 wt%. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Novel ternary mixed‐brush single crystals were designed with disperse‐within‐disperse and star‐like co‐continuous morphologies based on poly(ethylene glycol) (PEG)‐b‐polystyrene (PS)/PEG‐b‐poly(methyl methacrylate) (PMMA)/PEG‐b‐polyaniline (PANI) and PEG‐b‐PS/PEG‐b‐PMMA/PEG‐b‐(poly(?‐caprolactone) (PCL) or poly(l ‐lactide) (PLLA)) block copolymers, respectively. In the disperse‐within‐disperse ternary mixed brushes, PANI nanorods were dispersed within the matrix (PS)–dispersed (PMMA) amorphous brushes. The flexibility and rigidity of brushes mainly affected the ultimate morphology and arrangement of amorphous coiled brushes in the vicinity of PANI nanorods. In addition, the migration of PCL and PLLA crystallizable brushes was evident into PMMA phases dispersed in the PS matrix, leading to star‐like co‐continuous patterns of PCL and PLLA brushes. This phenomenon was related to the miscibility of crystallizable PCL and PLLA brushes with the PMMA phase. The migration of crystallizable PCL and PLLA brushes increased the size of PMMA domains in the star‐like co‐continuous patterns. Despite the larger osmotic pressure of PLLA brushes, their higher miscibility with PMMA chains reflected the greater PMMA dispersal and wider PLLA star‐like branches. © 2017 Society of Chemical Industry  相似文献   

12.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

13.
陈韶云  田杜  李奇  钟敏  胡成龙  纪红兵 《化工进展》2021,40(7):3900-3908
利用拉曼光谱成像技术研究了聚苯乙烯/聚甲基丙烯酸甲酯(PS/PMMA)共混薄膜体系及其增容体系(增容剂为PS-b-PMMA嵌段共聚物)的相态结构及化学成分分布。实验结果表明,拉曼Mapping成像技术不仅可以得到PS/PMMA共混体系化学成分的精确分布图,同时也可以获取共混体系中分散相、界面相和连续相的分子指纹光谱。研究发现,共混体系中分散相和连续相组分分布与体系的组成紧密相关,当PS/PMMA质量比30/70时,分散相为PS,连续相为PMMA;当PS/PMMA质量比为50/50时,分散相为PS,但PS分子链仍存在于PMMA连续相中;当PS/PMMA质量比为70/30时,分散相为PMMA,连续相为PS。当增容剂PS-b-PMMA加入到PS/PMMA共混体系中后,分散相粒径减小、分布更加均匀、共混体系相容性指数(Nc)增大,说明PS/PMMA共混体系由完全不相容体系趋向变成半相容性体系,这是因为增容剂能增加PS和PMMA之间的相互作用,降低了体系的相分离程度,改善了共混体系的相容性。  相似文献   

14.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The effect of mixing technique and sequence on the distribution of methacrylated-butadienestyrene (MBS) emulsion particles in immiscible blends of polystyrene (PS) and a styrene/acrylonitrile copolymer (SAN) was examined using transmission electron microscopy. The shell of the emulsion particle is essentially poly(methyl methacrylate) (PMMA), which is miscible with SAN but immiscible with PS. In simple thermodynamic terms, the MBS particle should have an affinity for SAN over PS. It was found, however, that the sequence of mixing had a strong influence on the location of the MBS particles. If the PS-SAN interface is established before the addition of the MBS particles, the MBS particles are located exclusively in the SAN phase. If the MBS particles are present at the time the PS-SAN interface is formed, then the particles line up at the interface.  相似文献   

16.
A new method has been developed to determine the probability of miscibility in binary polymer blends through hydrodynamic interaction. This is achieved by the measurement of the free volume content in blends of carefully selected systems—styrene acrylonitrile (SAN)/poly(methyl methacrylate) (PMMA), PMMA/poly(vinyl chloride) (PVC), and PVC/polystyrene (PS)—with positron annihilation lifetime spectroscopy. The free volume content can predict the miscible/immiscible nature of the blends but provides no information on the extent of miscibility for different compositions of the blends. We have generalized a model used to understand the viscometric behavior of polymer/solvent systems to polymer/polymer systems through the free volume approach. This model provides two important parameters: a geometric factor (γ) and a hydrodynamic interaction parameter (α). γ depends on the molecular architecture, whereas α accounts for the excess friction at the interface between the constituents of the blend, and we propose that α can serve as a precursor to miscibility in a system and indicate which composition produces a high probability of miscibility. The efficacy of this proposition has been checked with measured free volume data for the three blend systems. The SAN/PMMA system produces a maximum α value of ?209 at 20% PMMA; PVC/PMMA produces a maximum α value of ?57 at 10% PMMA. Interestingly, for the PS/PVC system, α is close to zero throughout the entire concentration range. Therefore, we infer that α is perhaps an appropriate parameter for determining the composition‐dependent probability of miscibility in binary blend systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of compatibilizer on the morphological, thermal, mechanical, and rheological properties of poly(methyl methacrylate) (PMMA)/poly(N‐methyl methacrylimide) (PMMI) (70/30) blends were investigated. The compatibilizer used in this study was styrene–acrylonitrile–glycidyl methacrylate (SAN‐GMA) copolymer. Morphological characterization of the PMMA/PMMI (70/30) blend with SAN‐GMA showed a decrease in PMMI droplet size with an increase in SAN‐GMA. The glass‐transition temperature of the PMMA‐rich phase became higher when SAN‐GMA was added up to 5 parts per hundred resin by weight (phr). The flexural and tensile strengths of the PMMA/PMMI (70/30) blend increased with the addition of SAN‐GMA up to 5 phr. The complex viscosity of the PMMA/PMMI (70/30) blends increased when SAN‐GMA was added up to 5 phr, which implies an increase in compatibility between the PMMA and PMMI components. From the weighted relaxation spectrum, which was obtained from the storage modulus and loss modulus, the interfacial tension of the PMMA/PMMI (70/30) blend was calculated using the Palierne emulsion model and the Choi‐Schowalter model. The results of the morphological, thermal, mechanical, and rheological studies and the values of the interfacial tension of the PMMA/PMMI (70/30) blends suggest that the optimum compatibilizer concentration of SAN‐GMA is 5 phr. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43856.  相似文献   

18.
Poly(methyl methacrylate) – polycaprolactone (PMMA/PCL) microheterogeneous beads were synthesized by suspension polymerization starting from methyl methacrylate (MMA) monomer and PCL, which was synthesized by ring‐opening polymerization of ε‐caprolactone using ZnCl2 as initiator. The resulting polymer was fully characterized by 1H and 13C NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and dynamic mechanical thermal analysis (DMTA). The size distribution and morphology of the resulting beads were investigated by optical microscopy and scanning electron microscopy (SEM). Moreover, blends of PMMA beads and PCL in different proportions were prepared and the morphology of the films was examined by optical microscopy. The low compatibility between PMMA and PCL was clearly evidenced through these experiments.  相似文献   

19.
Rheological properties of the polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends were studied by Advanced Rheometric Expansion System (ARES). Storage modulus and loss modulus of the PS and PMMA blends were measured, and the interfacial tension of the PS and PMMA blends were obtained with various emulsion models by using the storage modulus and loss modulus of the blends. The value of interfacial tension estimated from the Palierne emulsion model was found to be 2.0 mN/m. Also, the interfacial tension between PS and PMMA was calculated by a theoretical model. The values of interfacial tension of the PS and PMMA blends obtained by the experiment and theoretical model were found to be in good agreement.  相似文献   

20.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号