首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generally, plastics and plastic films are low in moisture absorption and high in electric insulation. They are inherently easy to be charged with static and can cause a variety of static troubles. We developed a functional packaging material to solve these static problems, by using potassium ionomer. We reported good antistatic performance (e.g. short static decay time, and excellent ash test) of potassium ionomer films in a previous paper. However, a mechanism underlying the antistatic property of potassium ionomer has not yet been fully elucidated. In this study, we measured the space charge distributions of potassium ionomer using the pulsed electro‐acoustic method. As a result of the space charge measurements, we found characteristic charge distribution of potassium ionomer film. On the basis of the existence of this characteristic charge distribution, we speculate that the space electric charge distribution of a potassium ionomer film under a direct current electric field shows apparent electric charge movement. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We present in this paper an efficient and accurate low‐order solid‐shell element formulation for analyses of large deformable multilayer shell structures with non‐linear materials. The element has only displacement degrees of freedom (dofs), and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending) and to remedy volumetric locking. Based on the mixed Fraeijs de Veubeke‐Hu‐Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved and the locking associated with (nearly) incompressible materials is avoided via a new efficient enhancement of strain tensor. Shear locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. Two non‐linear 3‐D constitutive models (Mooney–Rivlin material and hyperelastoplastic material at finite strain) are applied directly without requiring the enforcement of the plane‐stress assumption. In particular, we give a simple derivation for the hyperelastoplastic model using spectral representations. In addition, the present element has a well‐defined lumped mass matrix, and provides double‐side contact surfaces for shell contact problems. With the dynamics referred to a fixed inertial frame, the present element can be used to analyse multilayer shell structures undergoing large overall motion. Numerical examples involving static analyses and implicit/explicit dynamic analyses of multilayer shell structures with both material and geometric non‐linearities are presented, and compared with existing results obtained from other shell elements and from a meshless method. It is shown that elements that did not pass the out‐of‐plane bending patch test could not provide accurate results, as compared to the present element formulation, which passed the out‐of‐plane bending patch test. The present element proves to be versatile and efficient in the modelling and analyses of general non‐linear composite multilayer shell structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with a geometrically non‐linear solid shell element to analyse piezoelectric structures. The finite element formulation is based on a variational principle of the Hu–Washizu type and includes six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and dielectric displacements. The element has eight nodes with four nodal degrees of freedoms, three displacements and the electric potential. A bilinear distribution through the thickness of the independent electric field is assumed to fulfill the electric charge conservation law in bending dominated situations exactly. The presented finite shell element is able to model arbitrary curved shell structures and incorporates a 3D‐material law. A geometrically non‐linear theory allows large deformations and includes stability problems. Linear and non‐linear numerical examples demonstrate the ability of the proposed model to analyse piezoelectric devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The material usage in the packaging market of Germany has decreased over the last few years. This trend results from the substitution of heavy packages with light‐weight, flexible materials. In this context, aluminium foil‐based multilayer films have been partly replaced by metallized laminates in food packaging technology. Other coating materials, such as Al2O3 or SiOx, are used where transparent films are desired. The disadvantage of these vacuum‐coated layers is the existence of pinholes which allow diffusion processes, in contrast to aluminium foil‐based multilayer films. In this study the barrier behaviour of vacuum coated laminate films was predicted by numerical simulation. The results are presented in terms of dimensionless parameters so that they may be transferred to analogous problems. This model provides a method to calculate the oxygen permeation through coated laminates. However, it is invalid for condensable gases such as water vapour. The simulation is suited for characterizing the influence of the compound structure on the barrier properties of vacuum coated laminate films. The results are verified by comparing the calculated with measured values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This work presents a new high performance open‐source numerical code, namely SPectral Elements in Elastodynamics with Discontinuous Galerkin, to approach seismic wave propagation analysis in visco‐elastic heterogeneous three‐dimensional media on both local and regional scale. Based on non‐conforming high‐order techniques, such as the discontinuous Galerkin spectral approximation, along with efficient and scalable algorithms, the code allows one to deal with a non‐uniform polynomial degree distribution as well as a locally varying mesh size. Validation benchmarks are illustrated to check the accuracy, stability, and performance features of the parallel kernel, whereas illustrative examples are discussed to highlight the engineering applications of the method. The proposed method turns out to be particularly useful for a variety of earthquake engineering problems, such as modeling of dynamic soil structure and site‐city interaction effects, where accounting for multiscale wave propagation phenomena as well as sharp discontinuities in mechanical properties of the media is crucial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A low cost nonaqueous potassium‐based battery–supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro‐slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg?1, a high power density of 599 W kg?1, a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems.  相似文献   

7.
Organic field‐effect transistors (OFETs) with impressively high hole mobilities over 10 cm2 V?1 s?1 and electron mobilities over 1 cm2 V?1 s?1 have been reported in the past few years. However, significant non‐ideal electrical characteristics, e.g., voltage‐dependent mobilities, have been widely observed in both small‐molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor‐unrelated, charge‐trapping‐induced non‐ideality in OFETs is reported, and a revised model for the non‐ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping‐induced non‐ideality exists in OFETs with different types of charge carriers (p‐type or n‐type), different types of dielectric materials (inorganic and organic) that contain different functional groups (? OH, ? NH2, ? COOH, etc.). As fas as it is known, this is the first report for the non‐ideal transport behaviors in OFETs caused by semiconductor‐independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non‐ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs.  相似文献   

8.
A vertex‐based finite volume (FV) method is presented for the computational solution of quasi‐static solid mechanics problems involving material non‐linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two‐ and three‐dimensional element types. A detailed comparison between the vertex‐based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A triboelectric nanogenerator (TENG) has been thought to be a promising method to harvest energy from environment. To date, the utilization of surface structure and material modification has been considered the most effective way to increase its performance. In this work, a wrinkle structure based high‐performance TENG is presented. Using the fluorocarbon plasma treatment method, material modification and surface structure are introduced in one step. The output ability of TENG is dramatically enhanced. After the optimization of plasma treatment, the maximum current and surface charge density are 182 μA about 165 μC m?2. Compared with untreated TENG, the wrinkle structure makes the current and surface charge density increase by 810% and 528%, separately. X‐ray photoelectron spectroscopy is employed to analyze the chemical modification mechanism of this fluorocarbon plasma treatment. Facilitated by its high output performance, this device could directly light 76 blue light emitting diodes under finger typing. The output electric energy could be stored then utilized to power a commercial calculator. As a result of the simple fabrication process and high output ability, devices fabricated using this method could bring forward practical applications using TENGs as power sources.  相似文献   

10.
简述了静电的产生及其危害,综述了防静电包装材料现状、抗静电方法与研究进展。抗静电方法分为添加抗静电剂、添加导电填料、与结构型高聚物共混三种方法。  相似文献   

11.
A non‐uniform rational B‐splines (NURBS)‐based interface‐enriched generalized finite element method is introduced to solve problems with complex discontinuous gradient fields observed in the structural and thermal analysis of the heterogeneous materials. The presented method utilizes generalized degrees of freedom and enrichment functions based on NURBS to capture the solution with non‐conforming meshes. A consistent method for the generation and application of the NURBS‐based enrichment functions is introduced. These enrichment functions offer various advantages including simplicity of the integration, possibility of different modes of local solution refinement, and ease of implementation. In addition, we show that these functions well capture weak discontinuities associated with highly curved material interfaces. The convergence, accuracy, and stability of the method in the solution of two‐dimensional elasto‐static problems are compared with the standard finite element scheme, showing improved accuracy. Finally, the performance of the method for solving problems with complex internal geometry is highlighted through a numerical example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Atomic crystal charge trap memory, as a new concept of nonvolatile memory, possesses an atomic level flatness interface, which makes them promising candidates for replacing conventional FLASH memory in the future. Here, a 2D material WSe2 and a 3D Al2O3/HfO2/Al2O3 charge‐trap stack are combined to form a charge‐trap memory device with a separation of control gate and memory stack. In this device, the charges are erased/written by built‐in electric field, which significantly enhances the write speed to 1 µs. More importantly, owing to the elaborate design of the energy band structure, the memory only captures electrons with a large electron memory window over 20 V and trap selectivity about 13, both of them are the state‐of‐the‐art values ever reported in FLASH memory based on 2D materials. Therefore, it is demonstrated that high‐performance charge trap memory based on WSe2 without the fatal overerase issue in conventional FLASH memory can be realized to practical application.  相似文献   

13.
As parallel and distributed computing gradually becomes the computing standard for large scale problems, the domain decomposition method (DD) has received growing attention since it provides a natural basis for splitting a large problem into many small problems, which can be submitted to individual computing nodes and processed in a parallel fashion. This approach not only provides a method to solve large scale problems that are not solvable on a single computer by using direct sparse solvers but also gives a flexible solution to deal with large scale problems with localized non‐linearities. When some parts of the structure are modified, only the corresponding subdomains and the interface equation that connects all the subdomains need to be recomputed. In this paper, the dual–primal finite element tearing and interconnecting method (FETI‐DP) is carefully investigated, and a reduced back‐substitution (RBS) algorithm is proposed to accelerate the time‐consuming preconditioned conjugate gradient (PCG) iterations involved in the interface problems. Linear–non‐linear analysis (LNA) is also adopted for large scale problems with localized non‐linearities based on subdomain linear–non‐linear identification criteria. This combined approach is named as the FETI‐DP‐RBS‐LNA algorithm and demonstrated on the mechanical analyses of a welding problem. Serial CPU costs of this algorithm are measured at each solution stage and compared with that from the IBM Watson direct sparse solver and the FETI‐DP method. The results demonstrate the effectiveness of the proposed computational approach for simulating welding problems, which is representative of a large class of three‐dimensional large scale problems with localized non‐linearities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Honeycomb paperboard's out‐of‐plane bearing performance is one of the important properties in packaging field application. Further improvement of its bearing performance has important value in engineering practice. In this paper, a honeycomb core structure was designed, and the bonding dimension and manufacturing process were designed. The mechanism of out‐of‐plane quasi‐static compression deformation of reinforced honeycomb paperboard was analyzed by experiments. The theoretical model of out‐of‐plane platform stress was constructed by applying the plastic deformation, plastic energy dissipation and energy conservation theory. The results show that the improved structure can be mechanically bonded in a flat state with less technological changes. Under the same honeycomb core material and core size parameters, the bearing strength of the improved structure increases by an average of 3.9 times to conventional structure. In order to meet the same compressive strength requirement, the improved structure can reduce the performance requirements of honeycomb core material or increase the core size compared with the conventional structure. When the honeycomb core cell is larger, the tension on the core layer required for the production process is reduced. The theoretical and experimental data are in good agreement with each other, and the relative errors are all less than 13%.  相似文献   

16.
This paper presents a general framework for the macroscopic, continuum‐based formulation and numerical implementation of dissipative functional materials with electro‐magneto‐mechanical couplings based on incremental variational principles. We focus on quasi‐static problems, where mechanical inertia effects and time‐dependent electro‐magnetic couplings are a priori neglected and a time‐dependence enters the formulation only through a possible rate‐dependent dissipative material response. The underlying variational structure of non‐reversible coupled processes is related to a canonical constitutive modeling approach, often addressed to so‐called standard dissipative materials. It is shown to have enormous consequences with respect to all aspects of the continuum‐based modeling in macroscopic electro‐magneto‐mechanics. At first, the local constitutive modeling of the coupled dissipative response, i.e. stress, electric and magnetic fields versus strain, electric displacement and magnetic induction, is shown to be variational based, governed by incremental minimization and saddle‐point principles. Next, the implications on the formulation of boundary‐value problems are addressed, which appear in energy‐based formulations as minimization principles and in enthalpy‐based formulations in the form of saddle‐point principles. Furthermore, the material stability of dissipative electro‐magneto‐mechanics on the macroscopic level is defined based on the convexity/concavity of incremental potentials. We provide a comprehensive outline of alternative variational structures and discuss details of their computational implementation, such as formulation of constitutive update algorithms and finite element solvers. From the viewpoint of constitutive modeling, including the understanding of the stability in coupled electro‐magneto‐mechanics, an energy‐based formulation is shown to be the canonical setting. From the viewpoint of the computational convenience, an enthalpy‐based formulation is the most convenient setting. A numerical investigation of a multiferroic composite demonstrates perspectives of the proposed framework with regard to the future design of new functional materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a new method for computing eigenvalue and eigenvector derivatives of asymmetric non‐conservative systems with distinct eigenvalues is presented. Several approaches have been proposed for eigenderivative analysis of systems with asymmetric and non‐positive‐definite mass, damping and stiffness matrices. The proposed formulation that is developed by combining the modal and algebraic methods neither have the complications of modal methods in calculating the complex left and right eigenvector derivatives nor suffer from numerical instability problems usually associated with algebraic methods. The method is applied to a functionally graded material (FGM) plate actively controlled by piezoelectric sensor/actuators. In this system, the feedback signal applied to each actuator patch is implemented as a function of the electric potential in its corresponding sensor patch. The use of this closed‐loop controlling system leads to a non‐self‐adjoint system with complex eigenvalues and eigenvectors. A finite element model is developed for static and dynamic analysis of closed‐loop controlled FGM plate. The first‐ and second‐order approximations of Taylor expansion are used to estimate the corresponding changes in the plate modal properties due to change in design parameters (the displacement feedback gains and the piezoelectric layer thickness in each S/A pair). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
An optical oxygen analyser was used in two small‐scale industrial trials to non‐destructively assess the quality of packaged convenience foods and packaging process. Beef lasagne packed under 70% vacuum and cooked under standard sous vide conditions was monitored for residual oxygen, using disposable sensors incorporated in each pack and a benchtop optical oxygen analyser. High levels of residual oxygen close to ambient were determined in the majority of packs after packaging, as opposed to anticipated levels of 4–5%. Residual oxygen was monitored over product shelf‐life (4 weeks at +4–10°C) along with measurement of microbial growth and lipid oxidation in food by conventional destructive methods. Oxygen levels in packs went down to almost zero between weeks 2 and 3 indicating deterioration of packaged product. Correlation between oxygen profiles and the rate of microbial growth and lipid oxidation was established. The optical oxygen sensor system was shown to provide valuable information about performance of the packaging process, product storage conditions and food quality in a convenient and cost‐efficient fashion and non‐destructively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
An ultrahigh pyridinic N‐content‐doped porous carbon monolith is reported, and the content of pyridinic N reaches up to 10.1% in overall material (53.4 ± 0.9% out of 18.9 ± 0.4% N content), being higher than most of previously reported N‐doping carbonaceous materials, which exhibit greatly improved electrochemical performance for potassium storage, especially in term of the high reversible capacity. Remarkably, the pyridinic N‐doped porous carbon monolith (PNCM) electrode exhibits high initial charge capacity of 487 mAh g?1 at a current density of 20 mA g?1, which is one of the highest reversible capacities among all carbonaceous anodes for K‐ion batteries. Moreover, the K‐ion full cell is successfully assembled, demonstrating a high practical energy density of 153.5 Wh kg?1. These results make PNCM promising for practical application in energy storage devices and encourage more investigations on a similar potassium storage system.  相似文献   

20.
An s‐adaptive finite element procedure is developed for the transient analysis of 2‐D solid mechanics problems with material non‐linearity due to progressive damage. The resulting adaptive method simultaneously estimates and controls both the spatial error and temporal error within user‐specified tolerances. The spatial error is quantified by the Zienkiewicz–Zhu error estimator and computed via superconvergent patch recovery, while the estimation of temporal error is based on the assumption of a linearly varying third‐order time derivatives of the displacement field in conjunction with direct numerical time integration. The distinguishing characteristic of the s‐adaptive procedure is the use of finite element mesh superposition (s‐refinement) to provide spatial adaptivity. Mesh superposition proves to be particularly advantageous in computationally demanding non‐linear transient problems since it is faster, simpler and more efficient than traditional h‐refinement schemes. Numerical examples are provided to demonstrate the performance characteristics of the s‐adaptive method for quasi‐static and transient problems with material non‐linearity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号