首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graft copolymerization of butyl acrylate (BA) onto chitosan was tried via a new protection‐graft‐deprotection procedure. About 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was synthesized and characterized by Fourier transform infrared spectra analysis (FT‐IR) and 1H‐NMR. Because the intermediate 6‐O‐maleoyl‐N‐phthaloyl‐chitosan was soluble in organic solvents, the graft copolymerization was carried out in a homogeneous system. Grafting was initiated by γ‐irradiation. The graft extent was dependent on the irradiation dose and the concentration of BA monomer, and copolymers with grafting above 100% were readily prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 489–493, 2006  相似文献   

2.
Atom transfer radical polymerization (ATRP) was employed to prepare graft copolymers having poly(MBr)‐alt‐poly(St) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches to obtain heat resistant graft copolymers. The macroinitiator was prepared by copolymerization of bromine functionalized maleimide (MBr) with styrene (St). The polymerization of MMA was initiated by poly(MBr)‐alt‐poly(St) carrying bromine groups as macroinitiator in the presence of copper bromide (CuBr) and bipyridine (bpy) at 110°C. Both macroinitiator and graft copolymers were characterized by 1H NMR, GPC, DSC, and TGA. The ATRP graft copolymerization was supported by an increase in the molecular weight (MW) of the graft copolymers as compared to that of the macroinitiator and also by their monomodal MW distribution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

4.
In this study, redox‐initiated free radical graft copolymerization of microcrystalline cellulose (MCC) and methyl methacrylate (MMA) has been carried out in aqueous media to develop a novel cellulose‐based copolymer. Cerium ammonium nitrate was used as the initiator in the presence of nitric acid. Effects of monomer concentration, initiator concentration, polymerization time, and polymerization temperature on the graft parameters of copolymers were studied. The successful grafting copolymerization between MCC and MMA was validated through attenuated total reflection, wide‐angle X‐ray diffraction, field‐emission scanning electron microscopy, and thermal gravimetric analysis. In comparison to native MCC, the resultant copolymers exhibited enhanced thermal stability and better compatibility with natural rubber, suggesting its potential application as reinforcement material in rubber industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42666.  相似文献   

5.
Summary Graft copolymerization of methyl methacrylate onto mercapto-chitin has been examined. The copolymerization reaction proceeded efficiently in dimethyl sulfoxide at 80°C to give chitin-graft-poly(methyl methacrylate)s. The grafting percentage increased with the amount of the monomer and reached above 1200% under appropriate conditions. The resulting graft copolymers exhibited remarkable affinity for various common organic solvents.  相似文献   

6.
A new photosensitive acrylate monomer having a pendant chlorocinnamoyl moiety (APCSK) was copolymerized with methyl methacrylate (MMA) in different feed compositions in ethyl acetate solution at 70°C using benzoyl peroxide as a free‐radical initiator. The newly synthesized copolymers were characterized by FTIR, 1H and 13C nuclear magnetic resonance (NMR) spectral techniques, as well as by size‐exclusion chromatography. Their thermal behaviour was assessed by thermogravimetric analysis in air and differential scanning calorimetry under nitrogen atmosphere. The copolymers exhibit no phase separation since there is only one glass transition temperature (Tg) value in the region of copolymer composition studied. The reactivity ratios of the comonomers were calculated by adopting linearization methods such as the Fineman–Ross (F‐R), Kelen–Tudos (K‐T) and extended Kelen–Tudos (ExtK‐T) methods, and by a non‐linear error‐in‐variables model method (EVM) using a computer program (RREVM). The results suggest that MMA is more reactive than APCSK and that their copolymerization leads to the formation of random copolymers. The photosensitivity of the copolymer samples was studied in solution as well as in thin films through UV irradiation. The influence of different factors, including solvent nature, concentration, temperature, photosensitizer and copolymer composition, on the rate of photocrosslinking of the photoreactive copolymers was investigated for effective industrial application of these polymers as negative photoresists. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A new single‐/two‐photon sensitive monomer, (E)‐5‐(4‐ethoxystyryl)?2‐nitrobenzyl methacrylate (ENbMA), was synthesized and copolymerized with methyl methacrylate (MMA) to form a series of photosensitive copolymers P(ENbMA–MMA)s that were well characterized by 1H NMR and GPC. The photochemical and photophysical properties of both photosensitive monomer and copolymers upon visible light irradiation were studied by UV–Vis, FTIR, and HPLC spectra, which confirmed that 5‐(4‐ethoxystyryl)‐2‐nitrobenzyl ester can be photolyzed effectively with generation of the corresponding 5‐(4‐ethoxystyryl)‐2‐nitrosobenzaldehyde and carboxylic acid groups. The successful photocleavage endowed the optimized copolymers with excellent micropatterning property due to the effective generation of alkaline‐soluble carboxylic acid groups. Moreover, the high two‐photon absorption cross‐sections (over 20 GM at 800 nm) and the comparable photolysis upon two‐photon NIR light irradiation of the chromophores provided the copolymers with significant application in two‐photon microfabrication. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4099–4106, 2013  相似文献   

8.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

9.
The synthesis of novel copolymers consisting of a side‐group liquid‐crystalline backbone and poly (methyl methacrylate) grafts were realized by the use of atom transfer radical polymerization (ATRP). In the first stage, the bromine‐functional copolymers 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate and (2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrole‐1‐yl)methyl 2‐bromopropanoate were synthesized by free‐radical polymerization. These copolymers were used as initiators in the ATRP of methyl methacrylate to yield graft copolymers. Both the macroinitiator and graft copolymers were characterized by 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. The ATRP graft copolymerization was supported by an increase in the molecular weight of the graft copolymers compared to that of the macroinitiator and also by their monomodal molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
This article reports on a facile route for the preparation of methyl acrylate and methyl methacrylate graft copolymers via a combination of catalytic olefin copolymerization and atom transfer radical polymerization (ATRP). The chemistry first involved a transforming process from ethylene/allylbenzene copolymers to a polyolefin multifunctional macroinitiator with pendant sulfonyl chloride groups. The key to the success of the graft copolymerization was ascribed to a fast exchange rate between the dormant species and active radical species by optimization of the various experimental parameters. Polyolefin‐g‐poly(methyl methacrylate) and polyolefin‐g‐poly(methyl acrylate) graft copolymers with controlled architecture and various graft lengths were, thus, successfully prepared under dilute ATRP conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Surface modification of argon plasma–pretreated low‐density polyethylene (LDPE) film via UV‐induced graft copolymerization with a fluorescent monomer, (pyrenyl)methyl methacrylate (Py)MMA, was carried out. The chemical composition and morphology of the (Py)MMA‐graft‐copolymerized LDPE [(Py)MMA‐g‐LDPE] surfaces were characterized, respectively, by X‐ray photoelectron spectroscopy (XPS) and by atomic force microscopy (AFM). The concentration of the surface‐grafted (Py)MMA polymer increased with Ar plasma pretreatment time and UV graft copolymerization time. The photophysical properties of the (Py)MMA‐g‐LDPE surfaces were measured by fluorescence spectroscopy. After graft copolymerization with the fluorescent monomer, the surface of the LDPE film was found to have incorporated new and unique functionalities. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1526–1534, 2001  相似文献   

12.
A study of the graft copolymerization of methyl methacrylate (MMA) from defatted pineapple leaf fibre (PALF) was carried out in the temperature range 45–55 °C, using a copper sulphate (CuSO4) and potassium periodate (KIO4) combination as initiator in an aqueous medium. Effects of variation of time and temperature, concentration of Cu(II), KIO4 and MMA, the amount of PALF, and also the effects of some inorganic salts and organic solvents on the percentage of graft yield have been investigated. On the basis of experimental findings, a reaction mechanism is proposed. FTIR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy of the original defatted PALF and MMA grafted PALF have been carried out. The thermal stability of PALF is improved through grafting. © 1999 Society of Chemical Industry  相似文献   

13.
Commercially available chlorinated polypropylene has been used as a macroinitiator for the Cu(0)‐mediated atom transfer radical polymerization of methyl methacrylate and tert‐butyl acrylate to obtain well‐defined graft copolymers. The relatively narrow molecular weight distribution in the graft copolymers and linear kinetic plots indicated the controlled nature of the copolymerization reactions. Both Fourier transform infrared and 1H NMR studies confirmed that the graft reactions had taken place successfully. After graft copolymer formation, tert‐butyl groups of poly(tert‐butyl acrylate) side chains were completely converted into poly(acrylic acid) chains to afford corresponding amphiphilic graft copolymers. © 2016 Society of Chemical Industry  相似文献   

14.
A new iodine‐containing methacrylate monomer, 3,4,5‐triiodobenzoyloxyethyl methacrylate (TIBEM), was synthesized by coupling 2‐hydroxyethyl methacrylate (HEMA) with 3,4,5‐triiodobenzoic acid. The monomer was characterized by 1H nuclear magnetic resonance, infrared (IR), and ultraviolet spectra. Homopolymerization and copolymerization of the monomer with methyl methacrylate (MMA) were carried out using 2,2′‐azobis isobutyronitrile as the initiator. A terpolymer of TIBEM, MMA, and HEMA was also synthesized. The copolymers were characterized by IR, gel permeation chromatography, differential thermal analysis, and thermogravimetric analysis (TGA). High molecular weight polymers were produced with MMA at different feed compositions of TIBEM. The polymers were found to be freely soluble in common solvents for acrylic polymers. TGA showed little decomposition of the copolymer below 280°C. Copolymers showed good radiopacity at 25 wt % of TIBEM in the feed. These copolymers could find applications in medical and dental areas where radiopacity is a desirable feature of the implants. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2580–2584, 2003  相似文献   

15.
Commercial brominated poly(isobutylene‐co‐isoprene) (BIIR) rubber has been directly used for the initiation of atom transfer radical polymerization (ATRP) by utilizing the allylic bromine atoms on the macromolecular chains of BIIR. The graft copolymerization of methyl methacrylate (MMA) from the backbone of BIIR which was used as a macroinitiator was carried out in xylene at 85 °C with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalytic complex. The polymerization conditions were optimized by adjusting the catalyst and monomer concentration to reach a higher monomer conversion and meanwhile suppress macroscopic gelation during the polymerization process. This copolymerization followed a first‐order kinetic behavior with respect to the monomer concentration, and the number‐average molecular weight of the grafted poly(methyl methacrylate) (PMMA) increased with reaction time. The resultant BIIR‐graft‐PMMA copolymers showed phase separation morphology as characterized by atomic force microscopy, and the presence of PMMA phase increased the polarity of the BIIR copolymers. This study demonstrated the feasibility of using commercial BIIR polymer directly as a macromolecular initiator for ATRP reactions, which opens more possibilities for BIIR modifications for wider applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43408.  相似文献   

16.
A series of acrylic monomers–starch graft copolymers were prepared by ceric ion initiation method by varying the amount of monomers. These graft copolymers were characterized by IR and 13C‐NMR spectroscopy. It was seen that as the concentration of monomer [acrylic acid (AA), methacrylic acid (MA), and methyl methacrylate (MMA)] increased the percent add‐on increased in all the graft copolymers, whereas grafting efficiency increased initially but showed a slight decrease with further increase in the monomer concentration (except for MMA). The release rate of paracetamol as a model drug from graft copolymers as well as their blends was studied at two different pH, 1.2 and 7.4, spectrophotometrically. The release of paracetamol in phosphate buffer solution at pH 1.2 was insignificant in the first 3 h for St‐g‐PAA‐ and St‐g‐PMA‐graft copolymers, which was attributed to the matrix compaction and stabilization through hydrogen bonding at lower pH. At pH 7.4, the release rate was seen to decrease with increase in add‐on. The tablet containing poly(methyl methacrylate) (PMMA) did not disintegrate at the end of 30–32 h, which may be attributed to the hydrophobic nature of PMMA. These results indicate that the graft copolymers may be useful to overcome the harsh environment of the stomach and can be used as excipients in colon‐targeting matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

18.
Amphiphilic copolymers of butyl acrylate (BA) and methyl methacrylate (MMA) with uniform polyoxyethylene (PEO) grafts were synthesized by the copolymerization of BA and MMA with a methacrylate‐terminated PEO macromer in benzene with azobisisobutyronitrile as an initiator. The effects of various copolymerization conditions on the grafting efficiency and molecular weight of the copolymers, as well as the effect of the copolymerization time on the conversions of the macromer and the monomers, were reported. The copolymers, with uniform PEO grafts, were purified by successive extractions with water and ether/acetone (3/7) to remove unreacted macromer and ungrafted copolymers of MMA and BA, respectively. The purified graft copolymers were characterized with IR, 1H‐NMR, membrane osmometry, gel permeation chromatography, and differential scanning calorimetry. The highest grafting efficiency was about 90%, and molecular weight of the copolymers varied around 105. The average grafting number of the copolymer was about 10. A study of the crystalline properties, emulsifying properties, phase‐transfer catalytic ability, and mechanical properties of the graft copolymers showed that the emulsifying volume decreased with the increasing molecular weight of the PEO grafts but increased with the PEO content. The conversion of potassium phenolate in the Williamson solid–liquid reaction obviously increased with an increasing PEO content of the graft copolymers. The crystallinity of the graft copolymers increased with the PEO content of the graft copolymers or the molecular weight of the macromer used. The copolymers, prepared under certain conditions, behaved as thermoplastic elastomers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2982–2988, 2003  相似文献   

19.
N‐cyclohexylmaleimide (CHMI) and styrene (St) were used to copolymerize with methyl methacrylate (MMA) to synthesize heat‐resistant poly(methyl methacrylate) (PMMA) by a solution copolymerization method and a suspension copolymerization method. Residual CHMI concentrations in the copolymers were analyzed by gas chromatography. Effects of styrene on residual CHMI concentration, glass transition temperature (Tg), molecular weight, and molecular weight distribution were studied. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1335–1339, 1999  相似文献   

20.
The dendritic Fréchet‐type polyarylether 2‐bromoisobutyrates (Gn‐Br, n = 1–3) as macroinitiators for the ‘living’/controlled radical polymerization of styrene (St) and methyl methacrylate (MMA) were investigated. The atom transfer radical polymerization of St and MMA carried out with CuBr/bpy (2,2′‐bipyridine) catalyst in bulk yielded well‐defined dendritic–linear diblock copolymers (Gn–PSt and Gn–PMMA). The use of G3–PSt for the block copolymerization of MMA and G3–PMMA for the chain extension polymerization of MMA in the presence of CuBr/bpy catalyst is also described. The triblock copolymers obtained were of predetermined molecular weights and relatively low polydispersities, which indicates the living nature of the reaction system. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号