首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical and thermal properties of glass bead–filled nylon‐6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass‐transition temperature (Tg) of the blend, indicating that there existed strong interaction between glass beads and the nylon‐6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon‐6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon‐6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon‐6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content. Finally, TGA and DSC measurements indicated that the thermal stability of the blend was obviously improved by incorporation of glass beads, whereas the melting behavior of the nylon‐6 remained relatively unchanged with increasing glass bead content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1885–1890, 2004  相似文献   

2.
The effect of the multiple recycling of nylon‐6 by injection molding on its physical–mechanical properties and morphology was studied after each cycle of injection. These studies were made in order to know how many times it is possible to recycle the nylon‐6 without significant loss of the physical–mechanical properties. Optical and electronic microscopy were used to evaluated the morphology. Molecular weight changes were determinated by gel permeation chromatography (GPC). The nylon‐6 was recycled 10 times, until the eighth cycle the properties of the material did not suffered any change. Changes of 10–15% in the properties between nylon‐6 with 10 cycles of injection and virgin material were observed. An exception was the percentage of elongation that decreased 70% gradually until in the tenth cycle of injection. The results from GPC show that the molecular weight of nylon‐6 increased with recycling (Mw = 17% and Mn = 14%). With the reprocess was also observed the presence of gels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 851–858, 2000  相似文献   

3.
尼龙6改性研究   总被引:2,自引:0,他引:2  
采用经化学改性的芳纶纤维增强尼龙6,并通过红外光谱和电镜分析其界面层,结果表明芳纶纤维经异氰酸酯化及封端稳定处理后,其表面所接技的不稳定基团-NCO转化成稳定的-NHCO-,封端结果较为明显;改性后纤维表面附有接枝物,从而使表面粗糙程度大大增加。用挤出和注塑的方法加工了PA6/Kevlar纤维(KF)复合材料,研究了它的拉伸、弯曲和冲击性能破坏形态。力学性能测试表明了改性尼龙6复合材料的拉伸和弯曲强度得到了改善,但冲击性能略为下降。  相似文献   

4.
This study throws light on the change of the optical properties and some structural properties due to graft copolymerization of polydiallyldimethyl ammonium chloride (PDADMAC) and polyacrylamide (PAA) of nylon‐6 fibers. Multiple‐beam interferometric technique in transmission was used to study the change of the diameter, refractive indices, and birefringence of nylon‐6 fibers at different graft yields. The results were utilized to investigate the isotropic refractive index, the mean polarizabilities per unit volume, dielectric constant, dielectric susceptibility, and surface reflectivity for nylon‐6 and grafted nylon‐6 fiber. The effect of grafted PAA onto modified nylon‐6 fibers containing PDADMAC on the crystallinity was studied by X‐ray diffraction. These results reflect good effect of grafting on the optical and structural properties of nylon‐6 fibers. The opto‐thermal properties of grafted PAA with different graft yields have been studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The cure characteristics and mechanical properties of short‐nylon‐fiber‐reinforced acrylonitrile–butadiene rubber composites with and without an epoxy resin as a bonding agent were studied. The epoxy resin was a good interfacial‐bonding agent for this composite system. The minimum torque showed a marginal increase with the resin concentration. The maximum–minimum torque showed only a marginal change with the resin. The scorch time decreased with the fiber concentration and resin content. The tensile strength and abrasion resistance were improved and the tear resistance and resilience were reduced with the resin concentration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 532–539, 2006  相似文献   

6.
Polyaniline (PANI)/Nylon‐6 composite films were prepared by oxidative polymerization of aniline (ANI) inside host Nylon‐6 film. Such a composite has the desired electro‐active and mechanical properties to serve as a self‐standing functional unit. Comparative studies on sorption of ANI by Nylon‐6 matrix from various ANI containing media were conducted revealing superior ANI uptake from neutral ANI solution in water. ANI content was measured to be as high as 12%. Spectroscopic measurements showed that hydrogen bonding seemed to play important role in ANI sorption by Nylon‐6 matrix. Polymerization was monitored using atomic force microscopy and conductivity measurements. The morphology studies showed the appearance of PANI nanodomains on Nylon‐6 surface in the early stages of the polymerization. Eventually the domains coalesced during polymerization forming a continuous PANI layer. The conductivity measurements confirmed the change of the morphology from isolated islands to continuous conducting surface by drastic increase in conductivity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The present work is concerned with the effect of processing variables and filler concentration on the electrical conductivity, hardness, and density of composite materials prepared by compression molding of a mixture of zinc powder and nylon 6 powder. The electrical conductivity of the composites is <10?12 S/cm, unless the metal content reaches the percolation threshold at a volume fraction of about 0.18, beyond which the conductivity increases markedly by as much as 10 orders of magnitude. The density of the composites was measured and compared with values calculated by assuming different void levels within the samples. Furthermore, it is shown that the hardness increases with the increase of metal concentration, but for values of filler volume fraction higher than about 0.30 the hardness of samples remains almost constant. Two parameters of molding process, temperature and time, were shown to have a notable effect on the conductivity of composites, whereas pressure has no influence on this property in the pressure range considered. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1449–1454, 2001  相似文献   

8.
The crystal structures of nylon‐6 and nylon‐6/clay fibers were investigated on annealing and drawing. Annealing increased the γ‐crystalline form of both fibers, as indicated by the DSC curves, and its effect was dominant in nylon‐6/clay fiber. On drawing, the γ‐crystalline form was easily converted into the α form in nylon‐6, whereas it was still observed at a relatively high spin‐draw ratio in nylon‐6/clay fiber. However, although the α‐crystal form was dominant in nylon‐6, the γ‐crystal form was dominant in nylon‐6/clay with annealing and drawing, on the basis of the XRD data. The fast crystallization rate of nylon‐6/clay compared with pure nylon‐6 was confirmed, on the basis of the Avrami exponent. The initial modulus of nylon‐6/clay fiber was 30 % higher than the neat nylon‐6 fiber. The reinforcing effect of clay on the dynamic storage modulus was observed. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The effects of applying titanate (TYZOR® TPT) and silane (DYNASYLAN VTMO) coupling agents to wet ground muscovite mica in nylon‐6 composites are described. Nylon‐6 composites of 5–40 wt % filler loadings were compounded using an APV Baker twin‐screw extruder. Mica (25 wt %) brought about an increase in the Young's modulus, flexural strength, and flexural modulus but did not produce significant variations in tensile and impact strength. Hence different coupling agents were employed. It was observed that titanate coupling agent improved the tensile strength and the Young's modulus of the composites much while the impact properties were enhanced by the silane coupling agent. An attempt was made to use ?‐caprolactum in improving the interfacial adhesion of the filler and the matrix. It was observed that ?‐caprolactum improved the flexural modulus of the composites most. The effect of coupling agents on the dielectric strength, heat distortion temperature, and morphology were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4074–4081, 2006  相似文献   

10.
Nylon 6/carbon black conductive composites were prepared using two different methods, masterbatch dilution and melt mixing. Their effect on the size and distribution of carbon black agglomerates in the matrix was studied in terms of electrical and mechanical properties and morphology. The electrical resistivity of composites prepared by both methods decreased with increasing filler composition. The electrical resistivity of the diluted masterbatch composites and the melt mixed composites was reduced from the resistivity of pure nylon 6, 1015 “ohm, cm”, to 107 “ohm, cm” at 1 and 6 wt % of carbon black, respectively. As the filler content increased, elongation at break and impact strength decreased, but tensile modulus increased. Masterbatch dilution method provided smaller carbon black clusters in composites compared to melt mixing method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2520–2526, 2006  相似文献   

11.
The crystallization and melting behavior of neat nylon‐6 (PA6) and multi‐walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt‐compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs composites instead of a single exotherm (TCC, 1) for the neat matrix. The formation of the higher‐temperature exotherm TCC, 2 is closely related to the addition of MWNTs. X‐ray diffraction (XRD) results indicate that only the α‐phase crystalline structure is formed upon incorporating MWNTs into PA6 matrix, independently of the cooling rate and annealing conditions. These observations are significantly different from those for PA6 matrix, where the increase in cooling rate or decrease in annealing temperature results in the crystal transformation from α‐phase to γ‐phase. The crystallization behavior of PA6/MWNTs composites is also significantly different from those reported in PA6/nanoclay systems, probably due to the difference in nanofiller geometry between one‐dimensional MWNTs and two‐dimensional nanoclay platelets. The nucleation sites provided by carbon nanotubes seem to be favorable to the formation of thermodynamically stable α‐phase crystals of PA6. The dominant α‐phase crystals in PA6/MWNTs composites may play an important role in the remarkable enhancement of mechanical properties. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
The distribution of maleated styrene‐hydrogenated butadiene‐styrene (mSEBS) elastomer and nano‐SiO2 in nylon 6 matrix was controlled by varying the blending procedure. Nano‐SiO2 particles with different surface properties (hydrophilic versus hydrophobic) were adopted to adjust their interactions with other components. Two different structures, separate dispersion of nano‐SiO2 and elastomer particles as well as encapsulation of nano‐SiO2 fillers by the elastomer, were obtained. The structures were confirmed through scanning electron microscope (SEM) investigation. The mechanical measurement results showed that the microstructure and the interactions among the components had dramatic influences on the final mechanical properties, especially Izod fracture toughness, for the ternary nanocomposites. The nanocomposites containing hydrophilic nano‐SiO2 had better mechanical performances compared with the composites filled with hydrophobic SiO2 when they were in the same microstructure. The nanocomposites with separate dispersion structure showed higher stiffness compared with those of encapsulation type. However, the separately dispersed nano‐SiO2 particles restricted the cavitation of elastomer phases that led to low toughening effectiveness. The difference of cavitation intensity for elastomer phase was revealed by SEM investigation on the facture surfaces for the nanocomposites with the two different microstructures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Doping of the polymeric electrospun nanofibers by metal oxides nanoparticles is usually performed by electrospinning of a colloidal solution containing the metal oxide nanoparticles. Besides the economical aspects, electrospinning of colloids is not efficient compared with spinning of sol–gels, moreover well attachment of the solid nanoparticles is not guaranteed. In this study, reduction of zinc acetate could be performed inside the nylon‐6 electrospun nanofibers; so polymeric nanofibers embedding ZnO nanoflakes were obtained. Typically, zinc acetate/nylon‐6 electrospun nanofibers were treated hydrothermally at 150°C for 1 h. Besides the utilized characterization techniques, PL study affirmed formation of ZnO. The produced nanofibers showed a good antibacterial activity which improves with increasing ZnO content. Overall, the present study opens new avenue to synthesize hybrid nanofibers by a facile procedure. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
In this investigation, in situ synthesis of zinc oxide nanoparticles in the presence of multiwalled carbon nanotubes (CNTs) have been carried out using a sonochemical technique. Zinc(II)acetate was used as a source of ZnO in the presence of ethylene glycol (EG) to obtain zinc oxide (ZnO) nanoparticles. The synthesized hybrid ZnO/CNTs nanoparticles were used as reinforcements to enhance the mechanical, thermal and UV absorbing properties of Nylon‐6 composite fibers. The polymer nanocomposites (PNC) were fabricated by dry mixing Nylon‐6 polymer powder with the ZnO/CNTs hybrid nanoparticles as the first step, then followed by the drying and melt extrusion process of fiber materials in a single‐screw extruder. The extruded fibers were stretched and stabilized using a godet set‐up and wound on a Wayne filament winder machine. The hybrid ZnO/CNTs infused Nylon‐6 composite fibers were compared with commercial ZnO, CNTs infused Nylon‐6 composite fibers and neat Nylon‐6 fibers for their structural and thermal properties. The morphological characteristics of ZnO/CNTs nanoparticles were carried out using X‐ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon‐6 PNC fibers which were of ~80 μ size were tested mechanically. The tensile tests revealed that failure stress of the 1% infused ZnO/CNTs Nylon‐6 PNC fibers is about 73% higher than the neat extruded Nylon‐6 fiber and the improvement in the tensile modulus is 377.4%. The DSC results show an increase in the glass transition temperature and crystallization for ZnO/CNTs infused Nylon‐6 PNC fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Poly (acrylonitrile‐butadiene‐styrene) (ABS) was used to modify diglycidyl ether of bisphenol‐A type of epoxy resin, and the modified epoxy resin was used as the matrix for making TiO2 reinforced nanocomposites and were cured with diaminodiphenyl sulfone for superior mechanical and thermal properties. The hybrid nanocomposites were characterized by using thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), universal testing machine (UTM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The bulk morphology was carefully analyzed by SEM and TEM and was supported by other techniques. DMA studies revealed that the DDS‐cured epoxy/ABS/TiO2 hybrid composites systems have two Tgs corresponding to epoxy and ABS rich phases and have better load bearing capacity with the addition of TiO2 particles. The addition of TiO2 induces a significant increase in tensile properties, impact strength, and fracture toughness with respect to neat blend matrix. Tensile toughness reveals a twofold increase with the addition of 0.7 wt % TiO2 filler in the blend matrix with respect to neat blend. SEM micrographs of fractured surfaces establish a synergetic effect of both ABS and TiO2 components in the epoxy matrix. The phenomenon such us cavitation, crack path deflection, crack pinning, ductile tearing of the thermoplastic, and local plastic deformation of the matrix with some minor agglomerates of TiO2 are observed. However, between these agglomerates, the particles are separated well and are distributed homogeneously within the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Poly(acrylonitrile‐styrene‐butadiene) (ABS) was used to modify diglycidyl ether of bisphenol‐A (DGEBA) type epoxy resin, and the modified epoxy resin was used as the matrix for making multiwaled carbon tubes (MWCNTs) reinforced composites and were cured with diamino diphenyl sulfone (DDS) for better mechanical and thermal properties. The samples were characterized by using infrared spectroscopy, pressure volume temperature analyzer (PVT), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermo mechanical analyzer (TMA), universal testing machine (UTM), and scanning electron microscopy (SEM). Infrared spectroscopy was employed to follow the curing progress in epoxy blend and hybrid composites by determining the decrease of the band intensity due to the epoxide groups. Thermal and dimensional stability was not much affected by the addition of MWCNTs. The hybrid composite induces a significant increase in both impact strength (45%) and fracture toughness (56%) of the epoxy matrix. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. FESEM micrographs reveal a synergetic effect of both ABS and MWCNTs on the toughness of brittle epoxy matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Hybrid composites based on bisphenol‐C‐formaldehyde resin and jute mat with rice, wheat, sugar cane, and jamun husks have been fabricated at 150°C under 30.4 MPa pressure for 2 h. The resin content in composites was 50% of fibers. Tensile strength, flexural strength, electric strength, and volume resistivity of hybrid composites have been evaluated and compared with those of jute‐bisphenol‐C‐formaldehyde composites. It is observed that the tensile strength of composites is found to decrease by 53–72%, which is mainly due to random orientation of sandwiched fibers. Flexural strength has increased by 53–153% except jute–rice husk composite for which it is decreased by 26%. A little change in dielectric breakdown strength (1.89–2.11 kV/mm) is found but volume resistivity of Jute–wheat husk and Jute–jamun husk composites has improved by 437–197% and it is slightly decreased(2.3–25.2%) for the remaining two composites. Thus, hybrid composites possess good mechanical and electrical properties signifying their importance in low strength and light weight engineering applications as well as low cost housing units such as partition and hard boards. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1754–1758, 2006  相似文献   

18.
A dual‐curable epoxyacrylate (EA) oligomer with one epoxide group and one vinyl group at each end was synthesized for the application as adhesive sealant in the liquid crystal display panels. However, after UV and thermal cure, the EA resin was brittle with a poor resistance to crack initiation and propagation. Liquid rubbers with different functional end groups were thus tried as toughening agents for the EA resin. Among all the rubber‐toughened EAs, the EA‐V5A5 added with vinyl‐terminated and amino‐terminated butadiene‐acrylonitrile copolymers (VTBN and ATBN) each at 5 phr had the highest fracture toughness, tensile strength, and elongation at break but a lower initial modulus. To raise the modulus, submicron‐sized silica particles (∼170 nm) with surface vinyl functional groups were further added to the EA‐V5A5 to prepare the hybrid composites. Because of interfacial chemical bonding provided by the surface vinyl functional groups, both modulus and fracture toughness were increased by adding silica particles, without any appreciable decrease in extensibility. For the hybrid composite at 20 phr silica particles, the initial modulus, fracture toughness, and fracture energy were raised by 10.3, 100, and 267%, respectively, when compared to the neat epoxyacrylate. Owing to their strong interfacial bonding, the increase of fracture toughness was mainly due to the crack deflection and bifurcation on silica particles, in addition to the rubber particle bridging and tearing as evidenced by SEM pictures on the fracture surface. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41820.  相似文献   

19.
A novel phase‐separating liquid rubber based on oligo(alkylmethacrylate) in combination with microglass beads was used to toughen an anhydride‐cured epoxy resin. The resulting hybrid composites, containing 5 or 10 wt % of oligomeric liquid rubber and between 10 and 60 wt % glass beads as well as composites containing corresponding amounts of glass beads but no liquid rubber, were characterized mechanically. The experimental data show that modification with glass beads results in increased stiffness and toughness compared to the neat resin but reduces tensile strength. Compared to the glass bead–filled composites, additional modification with methacrylic rubber leads to a further increase in toughness and also to an increase in strength but does not alter stiffness and glass‐transition temperature. This synergistic behavior is explained by the fact that the rubber separates preferably on the surface of the glass bead, forming a core–shell morphology during curing. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1040–1048, 2003  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号