首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several clinically active anticancer drugs are known to interfere with DNA topoisomerase II activity. However, the importance of the individual alpha (170 kDa) and beta (180 kDa) isozymes as targets of topoisomerase II-active drugs is not clear. To address this question, human CCRF-CEM leukemia cells were incubated with bromodeoxyuridine, and either the nascent DNA or bulk DNA not undergoing replication was purified by immunoprecipitation with an anti-bromodeoxyuridine antibody. The topoisomerase II isozymes that coprecipitated with either the nascent DNA or bulk DNA were analyzed by Western blotting. The alpha isozyme formed complexes with nascent DNA in cells pretreated with either VM-26 or mitoxantrone, while the beta isozyme was only bound to bulk DNA. At moderately cytotoxic concentrations, VM-26 enhanced the binding of topoisomerase II alpha to nascent DNA at least 5.2-fold compared to bulk DNA. However, in VM-26 resistant CEM/VM-1 cells incubated with equitoxic concentrations of VM-26, topoisomerase II alpha complex formation with nascent DNA was decreased at least 5.5-fold compared to bulk DNA. Drug-induced binding of topoisomerase II beta with bulk DNA in CEM/VM-1 cells did not correlate with cytotoxicity. Collectively, these results indicate that the formation of VM-26 stabilized complexes of topoisomerase II alpha with nascent DNA are critical to the development of cytotoxicity, and that resistance of CEM/VM-1 cells to VM-26 is related to impaired formation of these complexes. The results also provide indirect evidence that topoisomerase II alpha is involved in DNA, replication.  相似文献   

2.
3.
We have used gel retardation analysis to show that human DNA topoisomerase IIbeta can bind a 40 bp linear duplex containing a single DNA topoisomerase IIbeta cleavage site. Furthermore, we demonstrate for the first time that human DNA topoisomerase IIbeta binds to four-way junction DNA. This supports previous suggestions that topoisomerase II may be targeted to supercoiled DNA through the recognition of DNA cruciforms, helix-helix crossovers and hairpins. DNA topoisomerase IIbeta had a 4-fold higher affinity for the four-way junction than for the linear duplex, as demonstrated by protein titration and competition analysis. Furthermore, the DNA topoisomerase IIbeta:four-way junction complex was significantly more salt stable than the complex with linear DNA. The four-way junction contained potential topoisomerase IIbeta cleavage sites straddling the points of strand exchange, and indeed, topoisomerase IIbeta was able to cleave three of these four predicted sites. This indicates that topoiso-merase IIbeta can bind to the centre of the junction. Topoisomerase II has to bind both the transported and the gated DNA helices prior to strand passage, and it is possible that both helices are provided by the four-way junction in this case. The stable complex of DNA topoisomerase IIbeta with four-way junction DNA may provide an ideal substrate for further studies into the mechanism of substrate recognition and binding by DNA topoisomerase II.  相似文献   

4.
Increased expression of DNA topoisomerase II alpha has been associated with resistance to certain DNA-damaging alkylating agents, but no causal relationship or mechanism has been established. To investigate this observation, we developed a model of topoisomerase II overexpression by transfecting a full-length Chinese hamster ovary topoisomerase II alpha into EMT6 mouse mammary carcinoma. Topoisomerase II alpha-transfected cell lines demonstrated continued topoisomerase II alpha mRNA and protein expression, which were undetectable in vector-only lines, in stationary phase (G0-G1). The topoisomerase II transfectants were approximately 5-10-fold resistant to the alkylating agents cisplatin and mechlorethamine. Upon release from G0-G1, the topoisomerase II transfectants demonstrated more rapid thymidine incorporation and shorter cell-doubling times than control cells. Purified topoisomerase II and nuclear extracts with topoisomerase II-decatenating activity bound to cisplatin-treated DNA with significantly greater affinity than to untreated DNA in a cisplatin concentration-dependent manner. These observations suggest that expression of topoisomerase II alpha may have a role in cellular resistance to antineoplastic alkylating agents. The mechanism for this may involve increased binding of topoisomerase II alpha to alkylating agent-damaged DNA.  相似文献   

5.
Topoisomerase II is the cytotoxic target for a number of clinically relevant antitumor drugs. Berberrubine, a protoberberine alkaloid which exhibits antitumor activity in animal models, has been identified as a specific poison of topoisomerase II in vitro. Topoisomerase II-mediated DNA cleavage assays showed that berberrubine poisons the enzyme by stabilizing topoisomerase II-DNA cleavable complexes. Subsequent proteinase K treatments revealed that berberrubine-induced DNA cleavage was generated solely by topoisomerase II. Topoisomerase II-mediated DNA religation with elevated temperature revealed a substantial reduction in DNA cleavage induced by berberrubine, to the extent comparable to that of other prototypical topoisomerase II poison, etoposide, suggesting that DNA cleavage involves stabilization of the reversible enzyme-DNA cleavable complex. However, the step at which berberrubine induces cleavable complex may differ from that of etoposide as revealed by the difference in the formation of the intermediate product, nicked DNA. This suggests that berberrubine's primary mode of linear formation may involve trapping nicked molecules, formed at transition from linear to covalently closed circular DNA. Unwinding of the duplex DNA by berberrubine is consistent with an intercalative binding mode for this compound. In addition to the ability to induce the cleavable complex mediated with topoisomerase II, berberrubine at high concentrations was shown to specifically inhibit topoisomerase II catalytic activity. Berberrubine, however, did not inhibit topoisomerase I at concentrations up to 240 microM. Cleavage sites induced by topoisomerase II in the presence of berberrubine and etoposide were mapped in DNA. Berberrubine induces DNA cleavage in a site-specific and concentration-dependent manner. Comparison of the cleavage pattern of berberrubine with that of etoposide revealed that they share many common sites of cleavage. Taken together, these results indicate that berberrubine represents a new class of antitumor agent which exhibits the topoisomerase II poison activity as well as catalytic inhibition activity and may have a potential clinical value in cancer treatment.  相似文献   

6.
To gain insight into the relative catalytic efficiencies of mammalian type I and type II DNA topoisomerases, in the cellular context, we have used naked DNA and DNA incorporated into nucleosomes as substrates. We observed that the relaxation activity of both the enzymes declined with DNA containing increasing densities of nucleosomes; however, kinetic analysis revealed that topoisomerase I seemed less affected than topoisomerase II. The addition of histone H1, in stoichiometric amounts, to naked DNA or minichromosomes lessened the activity of topoisomerase II, and required 7-fold less for complete inhibition when the latter was used as the substrate. To ascertain if the observed differences are specific to topoisomerase II from testis, we examined the effect of nucleosomes on the catalytic efficiency of its isoform from liver. Interestingly, the suppression of relaxation activity of liver topoisomerase II required substrates containing higher mass ratios of histone octamer/DNA. Studies on the effect of nucleosomes on the action of teniposide displayed significant differences in the kinetics of the reaction, in its IC50 values, and have provided biochemical evidence for the first time that nucleosomes increased inhibition caused by teniposide. Further, this feature appears to be specific for topoisomerase II-directed drugs and is not shared by the generic class of either DNA-intercalating or non-DNA-intercalating ligands.  相似文献   

7.
In this report we examine biochemical and genetic alterations in DNA topoisomerase II (topoisomerase II) in K562 cells selected for resistance in the presence of etoposide (VP-16). Previously, we have demonstrated that the 30-fold VP-16-resistant K/VP.5 cell line exhibits decreased stability of drug-induced topoisomerase II/DNA covalent complexes, requires greater ATP concentrations to stimulate VP-16-induced topoisomerase II/DNA complex formation, and contains reduced mRNA and protein levels of the M(r) 170,000 isoform of topoisomerase II, compared with parental K562 cells. K/VP.5 cells grown in the absence of VP-16 for 2 years maintained resistance to VP-16, decreased levels of topoisomerase II, and attenuated ATP stimulation of VP-16-induced topoisomerase II/DNA binding, compared with K562 cells. Sequencing of cDNA coding for two consensus ATP binding sites and the active site tyrosine in the K/VP.5 topoisomerase II gene indicated that no mutations were present in these domains. In addition, single-strand conformational polymorphism analysis of restriction fragments encompassing the entire topoisomerase II cDNA revealed no evidence of mutations in the gene for this enzyme in K/VP.5 cells. Nuclear extracts from K562 (but not K/VP.5) cells contained a heat-labile factor that potentiated VP-16-induced topoisomerase II/DNA covalent complex formation in isolated nuclei from K/VP.5 cells. Immunoprecipitated topoisomerase II from K/VP.5 cells was 2.5-fold less phosphorylated, compared with enzyme from K562 cells. Collectively, our data suggest that acquired VP-16 resistance is mediated, at least in part, by altered levels or activity of a kinase that regulates topoisomerase II phosphorylation and hence drug-induced topoisomerase II/DNA covalent complex formation and stability.  相似文献   

8.
In mammalian cells, DNA topoisomerase II is the product of two distinct genes encoding the alpha and beta isoforms of the enzyme. Besides homodimeric topoisomerase IIalpha and IIbeta, we have recently shown that alpha/beta heterodimers constitute a third population of topoisomerase II in HeLa cells. We found that topoisomerase II heterodimers are not restricted to HeLa cells but exist in different mammalian cell types, and up to 25% of the total topoisomerase IIbeta population is involved in heterodimer formation. Studies of topoisomerase II phosphorylation in HeLa cells show that heterodimers are phosphorylated in vivo to a significantly lower level compared to homodimeric alpha enzymes, but in contrast to the latter neither heterodimers nor topoisomerase IIbeta homodimers coprecipitate together with a kinase activity that is able to mediate their phosphorylation. However, both enzymes can still be phosphorylated by exogenously added casein kinase II. The differential phosphorylation of topoisomerase II heterodimers suggests an alternative regulation of this topoisomerase II subclass compared to the homodimeric topoisomerase IIalpha counterparts.  相似文献   

9.
DNA topoisomerases I and II are the two major nuclear enzymes capable of relieving torsional strain in DNA. Of these enzymes, topoisomerase I plays the dominant role in relieving torsional strain during chromatin assembly in cell extracts from oocytes, eggs, and early embryos. We tested if the topoisomerases are used differentially during chromatin assembly in Saccharomyces cerevisiae by a combined biochemical and pharmacological approach. As measured by plasmid supercoiling, nucleosome deposition is severely impaired in assembly extracts from a yeast mutant with no topoisomerase I and a temperature-sensitive form of topoisomerase II (strain top1-top2). Expression of wild-type topoisomerase II in strain top1-top2 fully restored assembly-driven supercoiling, and assembly was equally efficient in extracts from strains expressing either topoisomerase I or II alone. Supercoiling in top1-top2 extract was rescued by adding back either purified topoisomerase I or II. Using the topoisomerase II poison VP-16, we show that topoisomerase II activity during chromatin assembly is the same in the presence and absence of topoisomerase I. We conclude that both topoisomerases I and II can provide the DNA relaxation activity required for efficient chromatin assembly in mitotically cycling yeast cells.  相似文献   

10.
DNA topoisomerase II catalyzes two different chemical reactions as part of its DNA transport cycle: ATP hydrolysis and DNA breakage/religation. The coordination between these reactions was studied using mutants of yeast topoisomerase II that are unable to covalently cleave DNA. In the absence of DNA, the ATPase activities of these mutant enzymes are identical to the wild type activity. DNA binding stimulates the ATPase activity of the mutant enzymes, but with steady-state parameters different from those of the wild type enzyme. These differences were examined through DNA binding experiments and pre-steady-state ATPase assays. One mutant protein, Y782F, binds DNA with the same affinity as wild type protein. This mutant topologically traps one DNA circle in the presence of a nonhydrolyzable ATP analog under the same conditions that the wild type protein catenates two circles. Rapid chemical quench and pulse-chase ATPase experiments reveal that the mutant proteins bound to DNA have the same sequential hydrolysis reaction cycle as the wild type enzyme. Binding of ATP to the mutants is not notably impaired, but hydrolysis of the first ATP is slower than for the wild type enzyme. Models to explain these results in the context of the entire DNA topoisomerase II reaction cycle are discussed.  相似文献   

11.
DNA methylation is deregulated during oncogenesis. Since several major anti-cancer drugs act on topoisomerases, we investigated the effects of cytosine methylation on topoisomerase cleavage activities. Both topoisomerase I and II cleavage patterns were modified by CpG methylation in c-myc gene DNA fragments. Topoisomerase II changes, mainly cleavage reduction, occurred for methylation sites within 7 base pairs from the topoisomerase II breaks and were different for VM-26 and azatoxin. For topoisomerase I, cleavage enhancement as well as suppression were observed. Using synthetic methylated oligonucleotides, we show that hemimethylation is sufficient to alter topoisomerase I activity. Cytosine methylation on the scissile strand within the topoisomerase I consensus sequence had strong effects. Cleavage was stimulated by methylation at position -4 and was strongly inhibited by methylation at position -3 (with position -1 being the enzyme-linked nucleotide). This inhibitory effect was attributed to the presence of a methyl group in the major groove, since the transition uracil to thymine also inhibited cleavage. Altogether these results suggest an interaction of topoisomerase I with the DNA major grove at positions -3 and -4. In addition, DNA methylation may have profound effects on the activity of topoisomerases and may alter the distribution of cleavage sites produced by anticancer drugs in chromatin.  相似文献   

12.
Alterations in the amino acid composition, phosphorylation pattern, or intracellular levels of topoisomerase II have been associated with resistance to antineoplastic agents whose effects are mediated through interactions with this enzyme. To develop a model system with which to investigate the determinants of topoisomerase II sensitivity or resistance to antineoplastic agents that target this enzyme, a cDNA encoding the wild-type Drosophila melanogaster topoisomerase II was ligated into a mammalian expression vector containing a glucocorticoid-inducible mouse mammary tumor virus promoter and transfected into an epipodophyllotoxin-resistant Chinese hamster ovary cell line (VPM(r)-5). In two transfectants carrying an intact, full-length Drosophila topoisomerase II cDNA, exposure to the inducing agent, dexamethasone (10 microM), resulted in complementation of the endogenous mutant topoisomerase II and phenotypic reversion to etoposide sensitivity. In the presence of glucocorticoid, etoposide-induced cytotoxicity increased 20-fold, despite the fact that Drosophila topoisomerase II mRNA expression was only 0.1% of that of the endogenous mammalian topoisomerase II. Induced cells demonstrated a marked increase in DNA single strand breaks compared with uninduced resistant cells, thereby providing biochemical evidence supporting increased DNA strand cleavage due to activation of the Drosophila enzyme. These observations demonstrate the ability of a wild-type Drosophila topoisomerase II to complement a mutant mammalian enzyme and suggest that transfectants capable of conditional topoisomerase II expression represent a useful model for studies of the biochemical pharmacology and structure-function relationships of normal and mutant enzymes.  相似文献   

13.
Mutations in DNA topoisomerase II are often correlated with drug-resistance in tumor cell lines. Studies of topoisomerase II-mediated drug-resistance in various model systems, as well as the sequencing of such mutations from drug-resistant tumors, have shed light on the functional domains of topoisomerase II, on how it interacts with inhibitors, and on the different mechanisms by which cells avoid the toxic effects of many clinically important anti-tumor drugs.  相似文献   

14.
Psorospermin is a plant natural product that shows significant in vivo activity against P388 mouse leukemia. The molecular basis for this selectivity is unknown, although psorospermin has been demonstrated to intercalate into DNA and alkylate N7 of guanine. Significantly, the alkylation reactivity of psorospermin at specific sites on DNA increased 25-fold in the presence of topoisomerase II. In addition, psorospermin trapped the topoisomerase II-cleaved complex formation at the same site. These results imply that the efficacy of psorospermin is related to its interaction with the topoisomerase II-DNA complex. Because thermal treatment of (N7 guanine)-DNA adducts leads to DNA strand breakage, we were able to determine the site of alkylation of psorospermin within the topoisomerase II gate site and infer that intercalation takes place at the gate site between base pairs at the +1 and +2 positions. These results provide not only additional mechanistic information on the mode of action of the anticancer agent psorospermin but also structural insights into the design of an additional class of topoisomerase II poisons. Because the alkylation site for psorospermin in the presence of topoisomerase II can be assigned unambiguously and the intercalation site inferred, this drug is a useful probe for other topoisomerase poisons where the sites for interaction are less well defined.  相似文献   

15.
Apurinic sites are position-specific poisons of topoisomerase II and stimulate DNA scission approximately 10-18-fold when they are located within the 4-base overhang generated by enzyme-mediated cleavage (Kingma, P. S., and Osheroff, N. (1997) J. Biol. Chem. 272, 1148-1155). To determine whether other major forms of spontaneous DNA damage also act as topoisomerase II poisons, the effects of position-specific apyrimidinic sites and deaminated cytosines (i.e. uracil:guanine mismatches) on the type II enzyme were determined. Both of these lesions stimulated topoisomerase II-mediated DNA scission with the same positional specificity as apurinic sites but were less efficacious. Moreover, apurinic sites dominated the effects of apyrimidinic sites in substrates that contained multiple lesions. The differential ability of spontaneous lesions to enhance DNA cleavage did not correlate with either a decreased stability of the double helix or the size of the gap formed by base loss. Rather, it appears to be due (at least in part) to increased rates of religation for substrates containing apyrimidinic sites or deaminated cytosines. These results suggest that several forms of spontaneous DNA damage are capable of acting as endogenous poisons of topoisomerase II.  相似文献   

16.
17.
The major established cause of acute myeloid leukemia (AML) in the young is cancer chemotherapy. There are two forms of treatment-related AML (t-AML). Each form has a de novo counterpart. Alkylating agents cause t-AML characterized by antecedent myelodysplasia, a mean latency period of 5-7 years and complete or partial deletion of chromosome 5 or 7. The risk is related to cumulative alkylating agent dose. Germline NF-1 and p53 gene mutations and the GSTT1 null genotype may increase the risk. Epipodophyllotoxins and other DNA topoisomerase II inhibitors cause leukemias with translocations of the MLL gene at chromosome band 11q23 or, less often, t(8;21), t(3;21), inv(16), t(8;16), t(15;17) or t(9;22). The mean latency period is about 2 years. While most cases are of French-American-British (FAB) M4 or FAB M5 morphology, other FAB AML subtypes, myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL) and chronic myelogenous leukemia (CML) occur. Between 2 and 12% of patients who receive epipodophyllotoxin have developed t-AML. There is no relationship with higher cumulative epipodophyllotoxin dose and genetic predisposition has not been identified, but weekly or twice-weekly schedules and preceding l-asparaginase administration may potentiate the risk. The translocation breakpoints in MLL are heterogeneously distributed within a breakpoint cluster region (bcr) and the MLL gene translocations involve one of many partner genes. DNA topoisomerase II cleavage assays demonstrate a correspondence between DNA topoisomerase II cleavage sites and the translocation breakpoints. DNA topoisomerase II catalyzes transient double-stranded DNA cleavage and rejoining. Epipodophyllotoxins form a complex with the DNA and DNA topoisomerase II, decrease DNA rejoining and cause chromosomal breakage. Furthermore, epipodophyllotoxin metabolism generates reactive oxygen species and hydroxyl radicals that could create abasic sites, potent position-specific enhancers of DNA topoisomerase II cleavage. One proposed mechanism for the translocations entails chromosomal breakage by DNA topoisomerase II and recombination of DNA free ends from different chromosomes through DNA repair. With few exceptions, treatment-related leukemias respond less well to either chemotherapy or bone marrow transplantation than their de novo counterparts, necessitating more innovative treatments, a better mechanistic understanding of the pathogenesis, and strategies for prevention.  相似文献   

18.
A covalently cross-linked dimer of yeast DNA topoisomerase II was created by fusing the enzyme with the GCN4 leucine zipper followed by two glycines and a cysteine. Upon oxidation of the chimeric protein, a disulfide bond forms between the two carboxyl termini, covalently and intradimerically cross-linking the two protomers. In addition, all nine of the cysteines naturally occurring in topoisomerase II have been changed to alanines in this construct. This cross-linked, cysteine-less topoisomerase II is catalytically active in DNA duplex passage as indicated by ATP-dependent DNA supercoil relaxation and kinetoplast DNA decatenation assays. However, these experiments do not directly distinguish between a "one-gate" and a "two-gate" mechanism for the enzyme.  相似文献   

19.
To examine the expression of topoisomerase I and topoisomerase II in primary lung cancer specimens at mRNA level, we carried out Northern blot analysis. As for topoisomerase I expression, there was no remarkable difference between lung cancer specimens and non-cancerous lung tissues. On the other hand, we could detect topoisomerase II mRNA in almost all lung cancer specimens, but not in non-cancerous tissues. By Southern blot analysis, we could not detect large deletion nor rearrangement in DNA level. These results suggest that the expression of topoisomerase II is highly increased in lung cancer at mRNA level and drugs against topoisomerase II might be more tumor-specific than those against topoisomerase I.  相似文献   

20.
The nuclear enzymes DNA topoisomerases I and II appeared as cellular targets for several antitumor drugs: campthotecin derivatives interacting with topoisomerase I, and actinomycin D, anthracycline derivatives, elliptinium acetate, mitoxantrone, epipodophyllotoxine derivatives, amsacrine and a new olivacine derivative, NSC-6596871 (S 16020-2), which interact with topoisomerase II. The functions of these enzymes are numerous and important since they are critical for DNA functions and cell survival. Despite the fact that they share the same target, topoisomerase II inhibitors have different mechanisms of action. Two principle types of induced alterations are involved in cellular resistance to topoisomerase II drugs: qualitative or quantitative alteration of the enzyme and/or increased drug efflux due to overexpression of P-glycoprotein. S 16020-2, a new olivacine derivative with a high antitumor activity against solid tumors, shows a potent cytotoxic effect against tumor cells expressing P-glycoprotein. This observation suggests that the comprehension of the respective effects of topoisomerase inhibitors and the precise knowledge of their mechanisms of resistance would improve the use of this therapeutic class in the clinic within rational chemotherapeutic combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号