首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InP and SiGe technologies are both attractive for design of circuits operating at 40 GB/s and beyond. In this paper, we describe a fully differential SiGe transimpedance amplifier (TIA) suitable for differential phase-shift keying applications. The TIA exhibits 49 dB-/spl Omega/ transimpedance, greater than 50-GHz bandwidth, and input-referred current noise less than 30 pA//spl radic/Hz. For comparison, we have also developed a similar TIA in an InP double-heterostructure bipolar transistor technology. The InP TIA had 48 dB-/spl Omega/ transimpedance and 49-GHz bandwidth.  相似文献   

2.
e figure (NF) is 2.3-3 dB in the whole 2.45-GHz ISM band. The measured 1-dB compression point, IIP3 and IIP2 is -9, 1 and 33 dBm, respectively. The DGLNA consumes 2 mA of current from a 1.8 V power supply.  相似文献   

3.
高佩君  闵昊 《半导体学报》2009,30(7):075007-5
This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is analyzed.Circuit design details within the guidelines of the analysis are presented.The chip was implemented in SMIC 0.18-μm 1P6M RF/mixed signal CMOS process.The DGLNA achieves a maximum gain of 8 dB and a minimum gain of 1 dB with good input return loss.In high gain mode, the measured noise figure(NF) is 2.3-3 dB in the whole 2.45-GHz ISM band.The measured 1-dB compression point, IIP3 and IIP2 is-9, 1 and 33 dBm, respectively.The DGLNA consumes 2 mA of current from a 1.8 V power supply.  相似文献   

4.
This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology.A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain.Incorporating an input inductor and a gate-inductive gain-peaking inductor,the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure.The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB.Under 1.2 V supply voltage,the proposed IF amplifier consumes 42 mW DC power.The chip die including pads takes up 0.53 mm~2,while the active area is only 0.022 mm~2.  相似文献   

5.
This paper presents a CMOS fully differential current feedback operational amplifier with controllable 3-dB bandwidth. The FDCFOA has the advantage of a wide range controllable 3-dB bandwidth (∼57–500 MHz) without changing the feedback resistance. The FDCFOA has a standby current of 320 μA. Application of the proposed FDCFOA in realizing second order low-pass filter with controllable 3-dB bandwidth is given. PSpice simulations of the FDCFOA block and its application are given using 0.25 μm CMOS technology from MOSIS and dual supply voltages ±0.75 V.  相似文献   

6.
设计了一款"基于噪声抵消技术的低功耗C频段的差分低噪声放大器。该放大器由输入级、放大级以及输出缓冲级3个模块构成,其中输入级采用电容交叉耦合的差分对与直接交叉耦合结构差分对级联,实现输入匹配及噪声抵消;放大级采用具有电阻-电感并联反馈的电流复用结构来获得高的增益、良好的增益平坦性及低的功耗;输出缓冲级采用源跟随器结构,实现良好的输出匹配。基于TSMC 0.18μm CMOS工艺库,验证表明在C频段,放大器的增益为20.4设计了一款??基于噪声抵消技术的低功耗C频段的差分低噪声放大器。该放大器由输入级、放大级以及输出缓冲级3个模块构成,其中输入级采用电容交叉耦合的差分对与直接交叉耦合结构差分对级联,实现输入匹配及噪声抵消;放大级采用具有电阻-电感并联反馈的电流复用结构来获得高的增益、良好的增益平坦性及低的功耗;输出缓冲级采用源跟随器结构,实现良好的输出匹配。基于TSMC 0.18 μm CMOS工艺库,验证表明在C频段,放大器的增益为20.4??0.5 dB,噪声系数介于2.3~2.4 dB之间,输入和输出的回波损耗均优于-11 dB,稳定因子恒大于1,在6.5 GHz下,1 dB压缩点为-16.6 dBm,IIP3为-7 dBm,在2.5 V电压下,电路功耗仅为6.75 mW。  相似文献   

7.
Return-to-zero differential phase-shift keying applications require a differential amplifier with high bandwidth, high gain, low noise, and good input impedance match. In this paper, we describe an InGaAs-InP heterostructure bipolar transistor differential transimpedance amplifier with high bandwidth of 47 GHz and high gain of 56 dB-/spl Omega/. The input-referred current noise is less than 35 pA//spl radic/Hz over the measurement range up to 40 GHz.  相似文献   

8.
低功耗单端输入差分输出低噪声放大器   总被引:1,自引:0,他引:1  
该文设计了应用于无线局域网2.4GHz低噪声放大器(LNA),采用了SMIC0.18μm CMOS工艺技术和单端输入差分输出的电路结构.电路同时采用了双支路的电流复用技术,实现了低功耗、低噪声和高增益的性能;通过在输出级增加一级共栅级放大电路,有效地增加了电路的对称性;共源支路串联电感,解决了差分信号相位偏差问题.仿真结果表明,设计的LNA的噪声系数为1.76dB,增益为20.9dB,在1.8V电源电压下,功耗为8.5mW.  相似文献   

9.
赵晓冬 《电讯技术》2021,61(5):634-639
基于0.13μm锗硅(SiGe)双极型互补金属氧化物(Bipolar Complementary Metal Oxide Semi-conductor,BiCMOS)工艺,设计制作了一种高增益低功耗K频段低噪声放大器(Low Noise Amplifier,LNA),通过优化晶体管尺寸及利用硅通孔设计高品质因数射极退化...  相似文献   

10.
A 7-GHz low-noise amplifier (LNA) was designed and fabricated using 0.25-μm CMOS technology. A cascode configuration with a dual-gate MOSFET and shielded pads were adopted to improve the gain and the noise performance. The effects of the dual-gate MOSFET and the shielded pads are discussed quantitatively. An associated gain of 8.9 dB, a minimum noise figure of 1.8 dB, and an input-referred third-order intercept point of +8.4 dBm were obtained at 7 GHz. The LNA consumes 6.9 mA from a 2.0-V supply voltage. These measured results indicate the feasibility of a CMOS LNA employing these techniques for low-noise and high-linearity applications at over 5 GHz  相似文献   

11.
A 1.5-V, 1.5-GHz CMOS low noise amplifier   总被引:11,自引:0,他引:11  
A 1.5-GHz low noise amplifier (LNA), intended for use in a global positioning system (GPS) receiver, has been implemented in a standard 0.6-μm CMOS process. The amplifier provides a forward gain (S21) of 22 dB with a noise figure of only 3.5 dB while drawing 30 mW from a 1.5 V supply. In this paper, we present a detailed analysis of the LNA architecture, including a discussion on the effects of induced gate noise in MOS devices  相似文献   

12.
We demonstrated a 90-GHz InP-HEMT lossy match amplifier (LMA) with a 20-dB gain for the first time. The power consumption was 220 mW, which is the smallest ever reported for a broadband amplifier with a bandwidth of over 80 GHz. The amplifier acts as a C-R coupled amplifier in the low to medium frequency range and as an L-C match amplifier at high frequencies. This configuration provides both high gain and wide bandwidth. The key to achieving a bandwidth of over 80 GHz is broadband matching in the L-C match amplifier. In this paper, we propose a broadband matching technique with a low-Q network and describe the design guideline we used to get excellent performance.  相似文献   

13.
A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers   总被引:1,自引:0,他引:1  
A CMOS limiting amplifier with a bandwidth of 3 GHz, a gain of 32 dB, and a noise figure of 16 dB is described. The amplifier is fabricated in a standard 2.5-V 0.25-μm CMOS technology and consumes 53 mW. Inversely scaled amplifier stages and active inductors with a low voltage drop are used to achieve this performance. The amplifier is targeted for use in 2.5-Gb/s (OC-48) SONET systems  相似文献   

14.
In this paper, a low power differential inductor-less Common Gate Low Noise Amplifier (CG-LNA) is presented for Wireless Sensor Network (WSN) applications. New Shunt feedback is employed with noise cancellation and Dual Capacitive Cross Coupling (DCCC) techniques to improve the performance of common gate structures in terms of gain, Noise Figure (NF) and power consumption. The shunt feedback path boosts the input conductance of the LNA in current reuse scheme. Both shunt feedback and current reuse bring power dissipation down considerably. In addition, the positive feedback is utilized to cancel the thermal noise of the input transistor. The proposed LNA is designed and simulated in 0.18 µm TSMC CMOS technology. Post layout Simulation results indicate a voltage gain of 16.5 dB with −3 dB bandwidth of 100 MHz–3 GHz. Also third order Input Intercept Point (IIP3) is equal to + 1 dBm. The minimum NF is 2.8 dB and the value of NF at 2.4 GHz is 2.9 dB. S11 is better than −13 dB in whole frequency range. The core LNA consumes 985 µW from a 1.8 V DC voltage supply.  相似文献   

15.
This paper describes the design of a transimpedance amplifier (TIA) for a low-power, short-distance, high-density fiber-optic interconnect communication system. The single-ended circuit has been designed in an 80-nm digital CMOS process and consumes only 2.2 mW from a 1-V supply. The measured results show a transimpedance gain of 52 dB/spl Omega/ and a large bandwidth of 20 GHz. This work presents the highest bandwidth at the lowest power consumption for CMOS transimpedance amplifiers reported to date.  相似文献   

16.
This paper reports on what is believed to be the highest frequency bipolar voltage-controlled oscillator (VCO) monolithic microwave integrated circuit (MMIC) so far reported. The W-band VCO is based on a push-push oscillator topology, which employs InP HBT technology with peak fT's and fmax's of 75 and 200 GHz, respectively. The W-band VCO produces a maximum oscillating frequency of 108 GHz and delivers an output power of +0.92 dBm into 50 Ω. The VCO also obtains a tuning bandwidth of 2.73 GHz or 2.6% using a monolithic varactor. A phase noise of -88 dBc/Hz and -109 dBc/Hz is achieved at 1- and 10-MHz offsets, respectively, and is believed to be the lowest phase noise reported for a monolithic W-band VCO. The push-push VCO design approach demonstrated in this work enables higher VCO frequency operation, lower noise performance, and smaller size, which is attractive for millimeter-wave frequency source applications  相似文献   

17.
A 5-GHz low phase noise differential colpitts CMOS VCO   总被引:1,自引:0,他引:1  
A low noise 5-GHz differential Colpitts CMOS voltage-controlled oscillator (VCO) is proposed in this letter. The Colpitts VCO core adopts only PMOS in a 0.18-/spl mu/m CMOS technology to achieve a better phase noise performance since PMOS has lower 1/f noise than NMOS. The VCO operates from 4.61 to 5 GHz with 8.3% tuning range. The measured phase noise at 1-MHz offset is -120.42 dBc/Hz at 5 GHz and -120.99 dBc/Hz at 4.61 GHz. The power consumption of the VCO core is only 3 mW. To the authors' knowledge, this differential Colpitts CMOS VCO achieves the best figure of merit (FOM) of 189.6 dB at 5-GHz band.  相似文献   

18.
19.
A 25-GHz complementary metal oxide semiconductor (CMOS) cascaded single-stage distributed amplifier (CSSDA) using standard 0.18-/spl mu/m CMOS technology is presented in this letter. It demonstrates the highest gain-bandwidth product (GBP) with smallest chip area reported for a fully-integrated CMOS wideband amplifier using a standard Si-based integrated circuit process. The chip size including testing pads is only 0.36mm/sup 2/, and the ratio of GBP to chip size achieves 552GHz/mm/sup 2/. This circuit is the first CSSDA realized in CMOS technology, and represents state-of-the-art performances.  相似文献   

20.
This paper presents a dual mode CMOS low noise amplifier (LNA) suitable for Worldwide Interoperability for Microwave Access applications, at 2.4?GHz. The design concept is based on body biasing. An off chip Digital to Analog Converter is used to generate the proper body bias voltage to control the LNA gain and linearity. Measurement results show that in the high gain mode, for V BS?=?0.3?V, the cascode LNA, implemented in a 0.13???m CMOS standard process, exhibits a 14?dB power gain, a 3.6?dB noise figure (NF) and ?4.6?dBm of third order intercept point (IIP3) for a 4?mA current consumption under 1?V supply. Tuning V BS to ?0.55?V, switches the LNA into the low gain mode. It achieves 8.6?dB power gain, 6.2?dB NF and 6?dBm IIP3 under a constrained power consumption of 1.7?mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号