首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
一种求解多目标优化问题的粒子群算法   总被引:1,自引:0,他引:1  
提出一种多目标粒子群算法,其采用外部集合保存当前找到的最优解集,采用强ε支配关系更新外部集合,使解集保持良好的分布性.对粒子全局极值的选取设计新的选择思路,提出极值变异的思想,采用新的粒子更新策略加快解集的收敛,加入自适应变异算子避免陷入局部非劣最优解.通过使用一系列标准的测试函数进行实验,实验结果表明该算法在保持解集分布性和收敛性方面较有效,且实现简单、表现稳定.  相似文献   

2.
提出一种多目标粒子群算法处理约束优化问题(MOCPSO). 首先将约束优化问题转化为多目标问题, 然后给出一个不可行阈值来充分地利用不可行粒子的信息引导种群的飞行; 并提出一种粒子间的比较准则以比较它们的优劣; 最后, 为了增加种群的多样性, 提升种群跳出局部最优解的能力, 引入高斯白噪声扰动. 选取有代表性的标准测试函数对MOCPSO算法的性能进行仿真实验, 相比较其它算法, 结果显示MOCPSO算法是求解约束优化问题的有效算法.  相似文献   

3.
求解多目标优化问题的灰色粒子群算法   总被引:9,自引:0,他引:9  
于繁华  刘寒冰  戴金波 《计算机应用》2006,26(12):2950-2952
鉴于基本粒子群算法无法解决高维多目标优化问题,提出了一种适合求解高维多目标优化问题的灰色粒子群算法(GPSO),该算法根据灰色关联能够很好地分析目标矢量之间的接近程度,并能掌握解空间全貌的特点,利用灰色关联度的大小来选取粒子群算法中的全局极值和个体极值。实验结果证明,该算法可行而有效,同时也拓展了粒子群算法的应用领域。  相似文献   

4.
基于粒子群算法求解多目标优化问题   总被引:58,自引:0,他引:58  
粒子群优化算法自提出以来,由于其容易理解、易于实现,所以发展很快,在很多领域得到了应用.通过对粒子群算法全局极值和个体极值选取方式的改进,提出了一种用于求解多目标优化问题的算法,实现了对多目标优化问题的非劣最优解集的搜索,实验结果证明了算法的有效性.  相似文献   

5.
求解多目标优化问题的自适应粒子群算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于自适应惯性权重的多目标粒子群优化算法AWMOPSO,采用新的适应值分配机制,在搜索过程中根据粒子的适应值对粒子进行分类,动态调整粒子的惯性权重以控制粒子的开发和探索能力。用外部精英集保存非支配解,并通过拥挤距离维持解的多样性。引入精英迁移和局部扰动策略,提高收敛的速度和精度。典型的测试函数的计算结果表明了算法能够快速逼近Pareto最优前沿,是求解多目标优化问题的有效方法。  相似文献   

6.
一种求解多目标0-1规划问题的自适应粒子群算法   总被引:2,自引:0,他引:2  
对于带有线性约束的多目标0-1规划问题,给出了一种自适应的粒子群优化算法。该算法利用变换来控制模型的线性约束,并通过对各目标函数进行自适应加权的方式形成适应度函数。数值结果表明该算法是有效的,可以求解实际应用中的一些模型。  相似文献   

7.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。  相似文献   

8.
多序列比对问题的粒子群优化算法求解   总被引:2,自引:0,他引:2  
文章提出了一新的算法,利用粒子群优化算法求解多序列比对的问题,这是粒子群优化算法在生物信息学方面的一个新的应用。文章从粒子群算法的原理和多序列比对问题模型入手,来提出怎样改造粒子群优化算法使其可以解决多序列比对问题,最后给出利用粒子群优化算法求解多序列比对的算法,及其测试结果。  相似文献   

9.
布图规划是VLSI物理设计中最关键的步骤之一。随着超大规模集成电路规模的不断扩大以及模拟电路和数模混合电路的日益发展,布力规划在IC CAD工具中的工作用显得更加重要。针对一般的具有不可二划分结构的布图规划问题,在序列对模型的基础上,利用模拟退火算法实现了一般结构的带软模块的布图规划问题的自动设计,除了芯片面积的优化外,算法还考虑了芯片的宽长比例等问题。文中对一些MCNC的标准例子进行了测试,并与  相似文献   

10.
根据粒子群算法求解多目标问题的特点,个体极值和全局极值的选择不同会对实验结果产生很大影响。目前普遍的选择方法仅仅根据简单的支配关系,但是会存在两个解之间没有支配关系而导致不去更新个体最优值(PB)和全局最优值(GB),这样会导致更好的个体极值和全局极值的遗漏从而降低收敛时间。文中提出一种新的个体极值和全局极值的选择策略。使用这种策略,可以加快收敛,提高准确性,防止非劣解的遗漏。通过几个测试函数的实验仿真,所得解集的分步性和多样性都有显著的提高。  相似文献   

11.
基于权重的超大规模集成电路布图规划算法   总被引:3,自引:0,他引:3  
针对超大规模集成电路布图规划问题各个模块的面积以及长边长度的不同,提出权重的概念,并根据各个模块权重的不同;在优化过程中以不同概率选择相应的模块,克服了原有算法以相同的概率选择各个模块的缺点,达到了更好的布图规划效果.  相似文献   

12.
提出一种新的固定边框的布图算法.该算法采用SP表示方法,以公共子序列为基础,在随机搜索过程中限定布图宽度的变化,从而使减小芯片面积的目标与固定边框的目标在一定程度上取得一致.与现有的固定边框布图算法相比,文中算法在边框更紧凑、宽长比更大的条件下具有更高的成功率和更短的运行时间.此外,文中算法在布图初始阶段就可以对固定边框的合理性进行评估,避免了因给定的边框不合理而带来的时间上的浪费.  相似文献   

13.
Very large scale integration (VLSI) circuit partitioning is an important problem in design automation of VLSI chips and multichip systems; it is an NP-hard combinational optimization problem. In this paper, an effective hybrid multi-objective partitioning algorithm, based on discrete particle swarm optimzation (DPSO) with local search strategy, called MDPSO-LS, is presented to solve the VLSI twoway partitioning with simultaneous cutsize and circuit delay minimization. Inspired by the physics of genetic algorithm, uniform crossover and random two-point exchange operators are designed to avoid the case of generating infeasible solutions. Furthermore, the phenotype sharing function of the objective space is applied to circuit partitioning to obtain a better approximation of a true Pareto front, and the theorem of Markov chains is used to prove global convergence. To improve the ability of local exploration, Fiduccia-Matteyses (FM) strategy is also applied to further improve the cutsize of each particle, and a local search strategy for improving circuit delay objective is also designed. Experiments on ISCAS89 benchmark circuits show that the proposed algorithm is efficient.  相似文献   

14.
为了解决信息化工程监理面临的综合管理的复杂性, 通过综合考虑信息工程监理过程中对质量、投资、进度的控制, 采用以资源作为决策变量, 以整体工期优化为目标, 建立一种信息工程监理过程多目标优化的数学模型. 针对该数学模型, 构建了信息工程监理控制优化的多目标决策问题的目标函数, 结合一种多目标离散粒子群进化算法, 根据具体问题的特点, 重新定义和设计新的粒子进化方程, 从而较好地解决多目标优化信息工程监理控制目标的问题.  相似文献   

15.
本文针对多无人飞行器(UAV)协同执行任务的应用场景,提出了一种综合考虑任务分配和航迹规划因素的航迹规划算法。该算法借鉴微粒群算法(PSO)的思想,采用新的编码方式和优化策略。仿真实验验证了算法的有效性。  相似文献   

16.
基于多模型粒子群优化的PID参数鲁棒整定   总被引:1,自引:0,他引:1  
针对常规粒子群优化算法存在的鲁棒性能差的问题,提出一种基于多模型的粒子群优化方法.将其应用于对PID控制器参数的优化,有效地避免了PID控制器设计中复杂的参数调试.即使在模型失配的情况下,控制系统仍保持了良好的控制品质和鲁棒性.通过对几个典型被控对象的仿真实验,证明了所提出的优化算法的实用性、有效性和优越性.  相似文献   

17.
解多目标优化问题的新粒子群优化算法   总被引:3,自引:0,他引:3  
通过定义的粒子序值方差和U-度量方差,把对任意多个目标函数的优化问题转化成为两个目标函数的优化问题。继而把Pareto最优与粒子群优化(PSO)算法相结合,对转化后的优化问题提出了一种新的多目标粒子群优化算法,并证明了其收敛性。新方法用较少计算量便可以求出一组在最优解集合中分布均匀且数量充足的最优解。计算机仿真表明该算法对不同的试验函数均可用较少计算量求出在最优解集合中分布均匀且数量充足的最优解。  相似文献   

18.
在数据挖掘中,由于数据集中含有大量的冗余和不相关的特征,因此特征选择是一个重要的预处理过程。提出了一个基于混合互信息和粒子群算法的过滤式-封装式的多目标特征选择方法(HMIPSO)。根据粒子的pbest距离上次更新的迭代次数,提出了自适应突变策略去扰动种群,避免种群陷入局部最优。同时基于帕累托前沿面和外部文档提出了一个新的集合概念。结合互信息和新的集合知识提出了一个局部搜索策略,使得帕累托前沿面中的粒子可以删除不相关和冗余的特征,然后通过精英策略更新学习前和学习后的帕累托前沿面。最后将提出的算法和另外4种多目标算法在15个UCI数据集上进行了测试,实验结果表明提出的算法能够更好地降低特征个数和分类错误率。  相似文献   

19.
Very large scale integration (VLSI) circuit par- titioning is an important problem in design automation of VLSI chips and multichip systems; it is an NP-hard combi- national optimization problem. In this paper, an effective hy- brid multi-objective partitioning algorithm, based on discrete particle swarm optimzation (DPSO) with local search strat- egy, called MDPSO-LS, is presented to solve the VLSI two- way partitioning with simultaneous cutsize and circuit delay minimization. Inspired by the physics of genetic algorithm, uniform crossover and random two-point exchange operators are designed to avoid the case of generating infeasible so- lutions. Furthermore, the phenotype sharing function of the objective space is applied to circuit partitioning to obtain a better approximation of a true Pareto front, and the theorem of Markov chains is used to prove global convergence. To improve the ability of local exploration, Fiduccia-Matteyses (FM) strategy is also applied to further improve the cutsize of each particle, and a local search strategy for improving circuit delay objective is also designed. Experiments on IS- CAS89 benchmark circuits show that the proposed algorithm is efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号